
Parallel computations for
Metropolis Markov chains with
Picard maps

Sebastiano Grazzi

with Giacomo Zanella

Department of Decision Science, Bocconi University, Milan

July 26, 2025

1 / 22

2 / 22

Outline

• Overview

• Picard MapΦ forMarkov chain simulation

• Main theoretical results

• Simulations

• (Technical Appendix, only if time allows) Contraction ofΦ

S. Grazzi, G. Zanella, Parallel computations for Metropolis Markov chains with

Picard maps. arXiv:2506.09762

2 / 81

3 / 22

Overview

3 / 81

4 / 22

Zeroth-order Parallel Sampling
• Objective: Sample from a distribution π(dx) = C exp(−V(x))dx on X = Rd ,

for some unknown constant C.

– Motivation: Bayesian Inference, statistical physics,…

• Setting :

– Zeroth-order methods: point-wise evaluation of V (and not∇V , which is typical for

first-order methods)

– Parallel computing: K ≥ 1 processors that can work in parallel to execute the task

Performance

(Parallel round) complexity: number of point-wise evaluations of V per parallel

processor in order to obtain samples close to π (e.g. in total variation).

• Important quantities: dimension d, number of processors K .

4 / 81

4 / 22

Zeroth-order Parallel Sampling
• Objective: Sample from a distribution π(dx) = C exp(−V(x))dx on X = Rd ,

for some unknown constant C.

– Motivation: Bayesian Inference, statistical physics,…

• Setting :

– Zeroth-order methods: point-wise evaluation of V (and not∇V , which is typical for

first-order methods)

– Parallel computing: K ≥ 1 processors that can work in parallel to execute the task

Performance

(Parallel round) complexity: number of point-wise evaluations of V per parallel

processor in order to obtain samples close to π (e.g. in total variation).

• Important quantities: dimension d, number of processors K .

5 / 81

4 / 22

Zeroth-order Parallel Sampling
• Objective: Sample from a distribution π(dx) = C exp(−V(x))dx on X = Rd ,

for some unknown constant C.

– Motivation: Bayesian Inference, statistical physics,…

• Setting :

– Zeroth-order methods: point-wise evaluation of V (and not∇V , which is typical for

first-order methods)

– Parallel computing: K ≥ 1 processors that can work in parallel to execute the task

Performance

(Parallel round) complexity: number of point-wise evaluations of V per parallel

processor in order to obtain samples close to π (e.g. in total variation).

• Important quantities: dimension d, number of processors K .

6 / 81

5 / 22

Diagram Parallel sampling

Input

PK

P2

P1

Output

Main

V (·)

V (·)

V (·)

Figure 1: One parallel iteration of the algorithm

7 / 81

6 / 22

Markov chain Monte Carlo
• Approach: Markov chain Monte Carlo i.e. simulate a Markov chain

Xi+1 = Xi + f(Xi,Wi) , i = 0, 1, . . . (1)

whose limiting distribution coincides with π, for some i.i.d random variables

W0,W1, . . .

• Random Walk Metropolis (RWM): W = (Z,U), U ∼ U([0, 1]), Z ∼ N (0, ξ2),

f(x,W) = ZB(x,U, Z) with B(x, u, z) = 1 (π(x + z)/π(x) ≥ u).

• State of the art for log-concave distributions and sequential algorithms

(K = 1) with complexityO(d)1 (Andrieu et al. 2024).

How do we parallelize the recursion in (1), given its
sequential nature?

1 the notationO ignores constants and log terms

8 / 81

6 / 22

Markov chain Monte Carlo
• Approach: Markov chain Monte Carlo i.e. simulate a Markov chain

Xi+1 = Xi + f(Xi,Wi) , i = 0, 1, . . . (1)

whose limiting distribution coincides with π, for some i.i.d random variables

W0,W1, . . .

• Random Walk Metropolis (RWM): W = (Z,U), U ∼ U([0, 1]), Z ∼ N (0, ξ2),

f(x,W) = ZB(x,U, Z) with B(x, u, z) = 1 (π(x + z)/π(x) ≥ u).

• State of the art for log-concave distributions and sequential algorithms

(K = 1) with complexityO(d)1 (Andrieu et al. 2024).

How do we parallelize the recursion in (1), given its
sequential nature?

1 the notationO ignores constants and log terms

9 / 81

6 / 22

Markov chain Monte Carlo
• Approach: Markov chain Monte Carlo i.e. simulate a Markov chain

Xi+1 = Xi + f(Xi,Wi) , i = 0, 1, . . . (1)

whose limiting distribution coincides with π, for some i.i.d random variables

W0,W1, . . .

• Random Walk Metropolis (RWM): W = (Z,U), U ∼ U([0, 1]), Z ∼ N (0, ξ2),

f(x,W) = ZB(x,U, Z) with B(x, u, z) = 1 (π(x + z)/π(x) ≥ u).

• State of the art for log-concave distributions and sequential algorithms

(K = 1) with complexityO(d)1 (Andrieu et al. 2024).

How do we parallelize the recursion in (1), given its
sequential nature?

1 the notationO ignores constants and log terms

10 / 81

6 / 22

Markov chain Monte Carlo
• Approach: Markov chain Monte Carlo i.e. simulate a Markov chain

Xi+1 = Xi + f(Xi,Wi) , i = 0, 1, . . . (1)

whose limiting distribution coincides with π, for some i.i.d random variables

W0,W1, . . .

• Random Walk Metropolis (RWM): W = (Z,U), U ∼ U([0, 1]), Z ∼ N (0, ξ2),

f(x,W) = ZB(x,U, Z) with B(x, u, z) = 1 (π(x + z)/π(x) ≥ u).

• State of the art for log-concave distributions and sequential algorithms

(K = 1) with complexityO(d)1 (Andrieu et al. 2024).

How do we parallelize the recursion in (1), given its
sequential nature?

1 the notationO ignores constants and log terms

11 / 81

7 / 22

Zeroth order parallel sampling
• Previous attempts:

– Pre-fetching: computes V in each future potential state of the Markov chain for j ≥ 1
steps ahead.

• Caveat: number of potential states grows exponentially with j.

– Multiple-try: at each interation, simulates K proposal states and computes V in each

state.

• Caveat: Gap(Multiple-try) ≤ Gap(RWM) log(K) (Pozza and Zanella 2024).

→ ComplexityO(d/log(K))→ K has to grow exponentially with d

• Best scenarios: no waste of computational power: fromO(d) toO(d/K).

• Preview of our results:

Algorithm complexity K method

Sequential algorithm O(d) 1 exact

Online Picard O(
√
d) O(

√
d) exact

Approx. Online Picard O(1) O(d) approximate

12 / 81

7 / 22

Zeroth order parallel sampling
• Previous attempts:

– Pre-fetching: computes V in each future potential state of the Markov chain for j ≥ 1
steps ahead.

• Caveat: number of potential states grows exponentially with j.

– Multiple-try: at each interation, simulates K proposal states and computes V in each

state.

• Caveat: Gap(Multiple-try) ≤ Gap(RWM) log(K) (Pozza and Zanella 2024).

→ ComplexityO(d/log(K))→ K has to grow exponentially with d

• Best scenarios: no waste of computational power: fromO(d) toO(d/K).

• Preview of our results:

Algorithm complexity K method

Sequential algorithm O(d) 1 exact

Online Picard O(
√
d) O(

√
d) exact

Approx. Online Picard O(1) O(d) approximate

13 / 81

7 / 22

Zeroth order parallel sampling
• Previous attempts:

– Pre-fetching: computes V in each future potential state of the Markov chain for j ≥ 1
steps ahead.

• Caveat: number of potential states grows exponentially with j.

– Multiple-try: at each interation, simulates K proposal states and computes V in each

state.

• Caveat: Gap(Multiple-try) ≤ Gap(RWM) log(K) (Pozza and Zanella 2024).

→ ComplexityO(d/log(K))→ K has to grow exponentially with d

• Best scenarios: no waste of computational power: fromO(d) toO(d/K).

• Preview of our results:

Algorithm complexity K method

Sequential algorithm O(d) 1 exact

Online Picard O(
√
d) O(

√
d) exact

Approx. Online Picard O(1) O(d) approximate

14 / 81

7 / 22

Zeroth order parallel sampling
• Previous attempts:

– Pre-fetching: computes V in each future potential state of the Markov chain for j ≥ 1
steps ahead.

• Caveat: number of potential states grows exponentially with j.

– Multiple-try: at each interation, simulates K proposal states and computes V in each

state.

• Caveat: Gap(Multiple-try) ≤ Gap(RWM) log(K) (Pozza and Zanella 2024).

→ ComplexityO(d/log(K))→ K has to grow exponentially with d

• Best scenarios: no waste of computational power: fromO(d) toO(d/K).

• Preview of our results:

Algorithm complexity K method

Sequential algorithm O(d) 1 exact

Online Picard O(
√
d) O(

√
d) exact

Approx. Online Picard O(1) O(d) approximate

15 / 81

7 / 22

Zeroth order parallel sampling
• Previous attempts:

– Pre-fetching: computes V in each future potential state of the Markov chain for j ≥ 1
steps ahead.

• Caveat: number of potential states grows exponentially with j.

– Multiple-try: at each interation, simulates K proposal states and computes V in each

state.

• Caveat: Gap(Multiple-try) ≤ Gap(RWM) log(K) (Pozza and Zanella 2024).

→ ComplexityO(d/log(K))→ K has to grow exponentially with d

• Best scenarios: no waste of computational power: fromO(d) toO(d/K).

• Preview of our results:

Algorithm complexity K method

Sequential algorithm O(d) 1 exact

Online Picard O(
√
d) O(

√
d) exact

Approx. Online Picard O(1) O(d) approximate

16 / 81

8 / 22

Picard map for Markov chain
simulation

17 / 81

9 / 22

Picard Map
• X is also defined by

Xi = X0 +

i−1∑
`=0

f(X`,W`) , i = 1, 2, (2)

Picard map Φ

Φ: X K+1 ×WK 7→ X K+1 takes as input a trajectory X and outputs a new

trajectory X ′ = (X ′0, . . . , X
′
K) = Φ(X,W) defined as

X ′i = Φi(X,W) =

{
X0 i = 0

X0 +
∑i−1

`=0 f(X`,W`) 0 < i ≤ K .

• The K calls to the function f can be executed in parallel.

• Given W ∈ WK ,

– x → Φ(x,W) is deterministic.

– the fixed point X satisfying X = Φ(X,W) is the solution to (2).

• Compute X as the limit of the recursion X(j) = Φ(X(j−1),W) for j = 1, 2, . . .

18 / 81

9 / 22

Picard Map
• X is also defined by

Xi = X0 +

i−1∑
`=0

f(X`,W`) , i = 1, 2, (2)

Picard map Φ

Φ: X K+1 ×WK 7→ X K+1 takes as input a trajectory X and outputs a new

trajectory X ′ = (X ′0, . . . , X
′
K) = Φ(X,W) defined as

X ′i = Φi(X,W) =

{
X0 i = 0

X0 +
∑i−1

`=0 f(X`,W`) 0 < i ≤ K .

• The K calls to the function f can be executed in parallel.

• Given W ∈ WK ,

– x → Φ(x,W) is deterministic.

– the fixed point X satisfying X = Φ(X,W) is the solution to (2).

• Compute X as the limit of the recursion X(j) = Φ(X(j−1),W) for j = 1, 2, . . .

19 / 81

9 / 22

Picard Map
• X is also defined by

Xi = X0 +

i−1∑
`=0

f(X`,W`) , i = 1, 2, (2)

Picard map Φ

Φ: X K+1 ×WK 7→ X K+1 takes as input a trajectory X and outputs a new

trajectory X ′ = (X ′0, . . . , X
′
K) = Φ(X,W) defined as

X ′i = Φi(X,W) =

{
X0 i = 0

X0 +
∑i−1

`=0 f(X`,W`) 0 < i ≤ K .

• The K calls to the function f can be executed in parallel.

• Given W ∈ WK ,

– x → Φ(x,W) is deterministic.

– the fixed point X satisfying X = Φ(X,W) is the solution to (2).

• Compute X as the limit of the recursion X(j) = Φ(X(j−1),W) for j = 1, 2, . . .

20 / 81

9 / 22

Picard Map
• X is also defined by

Xi = X0 +

i−1∑
`=0

f(X`,W`) , i = 1, 2, (2)

Picard map Φ

Φ: X K+1 ×WK 7→ X K+1 takes as input a trajectory X and outputs a new

trajectory X ′ = (X ′0, . . . , X
′
K) = Φ(X,W) defined as

X ′i = Φi(X,W) =

{
X0 i = 0

X0 +
∑i−1

`=0 f(X`,W`) 0 < i ≤ K .

• The K calls to the function f can be executed in parallel.

• Given W ∈ WK ,

– x → Φ(x,W) is deterministic.

– the fixed point X satisfying X = Φ(X,W) is the solution to (2).

• Compute X as the limit of the recursion X(j) = Φ(X(j−1),W) for j = 1, 2, . . .

21 / 81

9 / 22

Picard Map
• X is also defined by

Xi = X0 +

i−1∑
`=0

f(X`,W`) , i = 1, 2, (2)

Picard map Φ

Φ: X K+1 ×WK 7→ X K+1 takes as input a trajectory X and outputs a new

trajectory X ′ = (X ′0, . . . , X
′
K) = Φ(X,W) defined as

X ′i = Φi(X,W) =

{
X0 i = 0

X0 +
∑i−1

`=0 f(X`,W`) 0 < i ≤ K .

• The K calls to the function f can be executed in parallel.

• Given W ∈ WK ,

– x → Φ(x,W) is deterministic.

– the fixed point X satisfying X = Φ(X,W) is the solution to (2).

• Compute X as the limit of the recursion X(j) = Φ(X(j−1),W) for j = 1, 2, . . .

22 / 81

10 / 22

Diagram Picard recursion

Input:
X0:K

W0:K−1

PK

P2

P1

Output:
X ′

0:K

= Φ(X0:K ,W0:K−1)

Main

f(XK−1,WK−1)

f(X1,W1)

f(X0,W0)

Figure 2: One parallel iteration of Picard recursion

23 / 81

11 / 22

Illustration Picard map

Figure 3: X
(i)
1 , X

(i)
2 , . . . of the Picard recursion for K = 1000 steps applied to a d = 100

dimensional RWM Markov chain. Gray line: Fixed point X1, . . . , XK . The dashed line

corresponds to the part of the trajectory that has converged to its fixed point.

24 / 81

11 / 22

Illustration Picard map

Figure 3: X
(i)
1 , X

(i)
2 , . . . of the Picard recursion for K = 1000 steps applied to a d = 100

dimensional RWM Markov chain. Gray line: Fixed point X1, . . . , XK . The dashed line

corresponds to the part of the trajectory that has converged to its fixed point.

25 / 81

11 / 22

Illustration Picard map

Figure 3: X
(i)
1 , X

(i)
2 , . . . of the Picard recursion for K = 1000 steps applied to a d = 100

dimensional RWM Markov chain. Gray line: Fixed point X1, . . . , XK . The dashed line

corresponds to the part of the trajectory that has converged to its fixed point.

26 / 81

11 / 22

Illustration Picard map

Figure 3: X
(i)
1 , X

(i)
2 , . . . of the Picard recursion for K = 1000 steps applied to a d = 100

dimensional RWM Markov chain. Gray line: Fixed point X1, . . . , XK . The dashed line

corresponds to the part of the trajectory that has converged to its fixed point.

27 / 81

11 / 22

Illustration Picard map

Figure 3: X
(i)
1 , X

(i)
2 , . . . of the Picard recursion for K = 1000 steps applied to a d = 100

dimensional RWM Markov chain. Gray line: Fixed point X1, . . . , XK . The dashed line

corresponds to the part of the trajectory that has converged to its fixed point.

28 / 81

11 / 22

Illustration Picard map

Figure 3: X
(i)
1 , X

(i)
2 , . . . of the Picard recursion for K = 1000 steps applied to a d = 100

dimensional RWM Markov chain. Gray line: Fixed point X1, . . . , XK . The dashed line

corresponds to the part of the trajectory that has converged to its fixed point.

29 / 81

11 / 22

Illustration Picard map

Figure 3: X
(i)
1 , X

(i)
2 , . . . of the Picard recursion for K = 1000 steps applied to a d = 100

dimensional RWM Markov chain. Gray line: Fixed point X1, . . . , XK . The dashed line

corresponds to the part of the trajectory that has converged to its fixed point.

30 / 81

11 / 22

Illustration Picard map

Figure 3: X
(i)
1 , X

(i)
2 , . . . of the Picard recursion for K = 1000 steps applied to a d = 100

dimensional RWM Markov chain. Gray line: Fixed point X1, . . . , XK . The dashed line

corresponds to the part of the trajectory that has converged to its fixed point.

31 / 81

11 / 22

Illustration Picard map

Figure 3: X
(i)
1 , X

(i)
2 , . . . of the Picard recursion for K = 1000 steps applied to a d = 100

dimensional RWM Markov chain. Gray line: Fixed point X1, . . . , XK . The dashed line

corresponds to the part of the trajectory that has converged to its fixed point.

32 / 81

11 / 22

Illustration Picard map

Figure 3: X
(i)
1 , X

(i)
2 , . . . of the Picard recursion for K = 1000 steps applied to a d = 100

dimensional RWM Markov chain. Gray line: Fixed point X1, . . . , XK . The dashed line

corresponds to the part of the trajectory that has converged to its fixed point.

33 / 81

11 / 22

Illustration Picard map

Figure 3: X
(i)
1 , X

(i)
2 , . . . of the Picard recursion for K = 1000 steps applied to a d = 100

dimensional RWM Markov chain. Gray line: Fixed point X1, . . . , XK . The dashed line

corresponds to the part of the trajectory that has converged to its fixed point.

34 / 81

11 / 22

Illustration Picard map

Figure 3: X
(i)
1 , X

(i)
2 , . . . of the Picard recursion for K = 1000 steps applied to a d = 100

dimensional RWM Markov chain. Gray line: Fixed point X1, . . . , XK . The dashed line

corresponds to the part of the trajectory that has converged to its fixed point.

35 / 81

11 / 22

Illustration Picard map

Figure 3: X
(i)
1 , X

(i)
2 , . . . of the Picard recursion for K = 1000 steps applied to a d = 100

dimensional RWM Markov chain. Gray line: Fixed point X1, . . . , XK . The dashed line

corresponds to the part of the trajectory that has converged to its fixed point.

36 / 81

11 / 22

Illustration Picard map

Figure 3: X
(i)
1 , X

(i)
2 , . . . of the Picard recursion for K = 1000 steps applied to a d = 100

dimensional RWM Markov chain. Gray line: Fixed point X1, . . . , XK . The dashed line

corresponds to the part of the trajectory that has converged to its fixed point.

37 / 81

12 / 22

Picard map Φ
• We simulated K = 1000 steps of RWM in j = 13 � K (parallel) iterations,

trading the use of parallel computing for a shorter run-time.

• The Picard map was previously considered for ODE/PDE:

Model N/d x → f(x) or x 7→ f(x,w) Method

ODE/PDE large smooth approx.

SDE (ULA, diff. models) constant smooth approx.

RWM constant piecewise constant exact

• Blessing of dimensionality for RWM: the convergence of Picard for RWM

improves in high dimensions as all increments become approximately

orthogonal with each other.

• Piecewise constant x 7→ f(x,w):

– The contraction of the Picard map for RWM is non-standard.

– X 7→ Φ(X,W) for RWM is constant in a neighborhood of its fixed point.

– The fixed point ofΦ can be reached exactly.

38 / 81

12 / 22

Picard map Φ
• We simulated K = 1000 steps of RWM in j = 13 � K (parallel) iterations,

trading the use of parallel computing for a shorter run-time.

• The Picard map was previously considered for ODE/PDE:

Model N/d x → f(x) or x 7→ f(x,w) Method

ODE/PDE large smooth approx.

SDE (ULA, diff. models) constant smooth approx.

RWM constant piecewise constant exact

• Blessing of dimensionality for RWM: the convergence of Picard for RWM

improves in high dimensions as all increments become approximately

orthogonal with each other.

• Piecewise constant x 7→ f(x,w):

– The contraction of the Picard map for RWM is non-standard.

– X 7→ Φ(X,W) for RWM is constant in a neighborhood of its fixed point.

– The fixed point ofΦ can be reached exactly.

39 / 81

12 / 22

Picard map Φ
• We simulated K = 1000 steps of RWM in j = 13 � K (parallel) iterations,

trading the use of parallel computing for a shorter run-time.

• The Picard map was previously considered for ODE/PDE:

Model N/d x → f(x) or x 7→ f(x,w) Method

ODE/PDE large smooth approx.

SDE (ULA, diff. models) constant smooth approx.

RWM constant piecewise constant exact

• Blessing of dimensionality for RWM: the convergence of Picard for RWM

improves in high dimensions as all increments become approximately

orthogonal with each other.

• Piecewise constant x 7→ f(x,w):

– The contraction of the Picard map for RWM is non-standard.

– X 7→ Φ(X,W) for RWM is constant in a neighborhood of its fixed point.

– The fixed point ofΦ can be reached exactly.

40 / 81

12 / 22

Picard map Φ
• We simulated K = 1000 steps of RWM in j = 13 � K (parallel) iterations,

trading the use of parallel computing for a shorter run-time.

• The Picard map was previously considered for ODE/PDE:

Model N/d x → f(x) or x 7→ f(x,w) Method

ODE/PDE large smooth approx.

SDE (ULA, diff. models) constant smooth approx.

RWM constant piecewise constant exact

• Blessing of dimensionality for RWM: the convergence of Picard for RWM

improves in high dimensions as all increments become approximately

orthogonal with each other.

• Piecewise constant x 7→ f(x,w):

– The contraction of the Picard map for RWM is non-standard.

– X 7→ Φ(X,W) for RWM is constant in a neighborhood of its fixed point.

– The fixed point ofΦ can be reached exactly.

41 / 81

13 / 22

Online Picard Algorithm (OPA)

• Goal: generalize Picard for N steps of the Markov chain with K ≤ N processors.

Figure 4: The color of the (j, i) entry represents the state of the ith step: � for

f(X
(j)
i ,Wi) = f(X

(j−1)
i ,Wi) (correct guess),� for f(X

(j)
i ,Wi) 6= f(X

(j−1)
i ,Wi) (error). �

where no processor has been allocated. : number of steps simulated according to

RWM.

• Key challenges for analyzing the convergence:

– For each (j, i) square: probability of� (error) vs� (correct guess).

– For each row j: probability of a strike of n > 1 consecutive� (or equivalently the

probability of the first�).

42 / 81

13 / 22

Online Picard Algorithm (OPA)

• Goal: generalize Picard for N steps of the Markov chain with K ≤ N processors.

i K 2K N

j

Figure 4: The color of the (j, i) entry represents the state of the ith step: � for

f(X
(j)
i ,Wi) = f(X

(j−1)
i ,Wi) (correct guess),� for f(X

(j)
i ,Wi) 6= f(X

(j−1)
i ,Wi) (error). �

where no processor has been allocated. : number of steps simulated according to

RWM.

• Key challenges for analyzing the convergence:

– For each (j, i) square: probability of� (error) vs� (correct guess).

– For each row j: probability of a strike of n > 1 consecutive� (or equivalently the

probability of the first�).

43 / 81

13 / 22

Online Picard Algorithm (OPA)

• Goal: generalize Picard for N steps of the Markov chain with K ≤ N processors.

i K 2K N

j

i K 2K N

j

Figure 4: The color of the (j, i) entry represents the state of the ith step: � for

f(X
(j)
i ,Wi) = f(X

(j−1)
i ,Wi) (correct guess),� for f(X

(j)
i ,Wi) 6= f(X

(j−1)
i ,Wi) (error). �

where no processor has been allocated. : number of steps simulated according to

RWM.

• Key challenges for analyzing the convergence:

– For each (j, i) square: probability of� (error) vs� (correct guess).

– For each row j: probability of a strike of n > 1 consecutive� (or equivalently the

probability of the first�).

44 / 81

13 / 22

Online Picard Algorithm (OPA)

• Goal: generalize Picard for N steps of the Markov chain with K ≤ N processors.

i K 2K N

j

i K 2K N

j

Figure 4: The color of the (j, i) entry represents the state of the ith step: � for

f(X
(j)
i ,Wi) = f(X

(j−1)
i ,Wi) (correct guess),� for f(X

(j)
i ,Wi) 6= f(X

(j−1)
i ,Wi) (error). �

where no processor has been allocated. : number of steps simulated according to

RWM.

• Key challenges for analyzing the convergence:

– For each (j, i) square: probability of� (error) vs� (correct guess).

– For each row j: probability of a strike of n > 1 consecutive� (or equivalently the

probability of the first�).

45 / 81

13 / 22

Online Picard Algorithm (OPA)

• Goal: generalize Picard for N steps of the Markov chain with K ≤ N processors.

i K 2K N

j

i K 2K N

j

Figure 4: The color of the (j, i) entry represents the state of the ith step: � for

f(X
(j)
i ,Wi) = f(X

(j−1)
i ,Wi) (correct guess),� for f(X

(j)
i ,Wi) 6= f(X

(j−1)
i ,Wi) (error). �

where no processor has been allocated. : number of steps simulated according to

RWM.

• Key challenges for analyzing the convergence:

– For each (j, i) square: probability of� (error) vs� (correct guess).

– For each row j: probability of a strike of n > 1 consecutive� (or equivalently the

probability of the first�).

46 / 81

14 / 22

Theoretical results

47 / 81

15 / 22

Probability of an error (�)

• Technical assumption: V is L-smooth and Hessian-Lipschitz.

(Simplified) Theorem 1

After j ≥ log(d) steps we have

P(f(X(j)i ,Wi) 6= f(Xi,Wi)) = O(
i

d
), i ≤ K.

• After j ≥ log(d) iterations, the probability of� at square (j, i) isO(i/d)

• The probability goes to 0 for d → ∞.

• The probability is controlled only for K ≤ O(d).

48 / 81

15 / 22

Probability of an error (�)

• Technical assumption: V is L-smooth and Hessian-Lipschitz.

(Simplified) Theorem 1

After j ≥ log(d) steps we have

P(f(X(j)i ,Wi) 6= f(Xi,Wi)) = O(
i

d
), i ≤ K.

• After j ≥ log(d) iterations, the probability of� at square (j, i) isO(i/d)

• The probability goes to 0 for d → ∞.

• The probability is controlled only for K ≤ O(d).

49 / 81

15 / 22

Probability of an error (�)

• Technical assumption: V is L-smooth and Hessian-Lipschitz.

(Simplified) Theorem 1

After j ≥ log(d) steps we have

P(f(X(j)i ,Wi) 6= f(Xi,Wi)) = O(
i

d
), i ≤ K.

• After j ≥ log(d) iterations, the probability of� at square (j, i) isO(i/d)

• The probability goes to 0 for d → ∞.

• The probability is controlled only for K ≤ O(d).

50 / 81

15 / 22

Probability of an error (�)

• Technical assumption: V is L-smooth and Hessian-Lipschitz.

(Simplified) Theorem 1

After j ≥ log(d) steps we have

P(f(X(j)i ,Wi) 6= f(Xi,Wi)) = O(
i

d
), i ≤ K.

• After j ≥ log(d) iterations, the probability of� at square (j, i) isO(i/d)

• The probability goes to 0 for d → ∞.

• The probability is controlled only for K ≤ O(d).

51 / 81

16 / 22

Complexity OPA
• TK,N: number of iterations of OPA for simulating N steps with K processors

(Simplified) Theorem 2

For all N ∈ N, K = O(
√
d), we have that TK,N = O(N

K
) with high probability.

• By the union bound, the first� happens at step i with probabilityO(i2/d). →
K = ���HHHO(d)O(

√
d).

Corollary 1 (Complexity OPA)

For log-concave distributions, the Online Picard algorithm with K = O(
√
d)

outputs a random variable X , with ‖L(X)− π‖TV ≤ ε after

J = O
(

L

m

√
d polylog(ε−1)

)
parallel iterations.

• Corollary 1 was obtained by combining Theorem 2 with known mixing time

bounds of RWM (Andrieu et al. 2024)

52 / 81

16 / 22

Complexity OPA
• TK,N: number of iterations of OPA for simulating N steps with K processors

(Simplified) Theorem 2

For all N ∈ N, K = O(
√
d), we have that TK,N = O(N

K
) with high probability.

• By the union bound, the first� happens at step i with probabilityO(i2/d). →
K = ���HHHO(d)O(

√
d).

Corollary 1 (Complexity OPA)

For log-concave distributions, the Online Picard algorithm with K = O(
√
d)

outputs a random variable X , with ‖L(X)− π‖TV ≤ ε after

J = O
(

L

m

√
d polylog(ε−1)

)
parallel iterations.

• Corollary 1 was obtained by combining Theorem 2 with known mixing time

bounds of RWM (Andrieu et al. 2024)

53 / 81

16 / 22

Complexity OPA
• TK,N: number of iterations of OPA for simulating N steps with K processors

(Simplified) Theorem 2

For all N ∈ N, K = O(
√
d), we have that TK,N = O(N

K
) with high probability.

• By the union bound, the first� happens at step i with probabilityO(i2/d). →
K = ���HHHO(d)O(

√
d).

Corollary 1 (Complexity OPA)

For log-concave distributions, the Online Picard algorithm with K = O(
√
d)

outputs a random variable X , with ‖L(X)− π‖TV ≤ ε after

J = O
(

L

m

√
d polylog(ε−1)

)
parallel iterations.

• Corollary 1 was obtained by combining Theorem 2 with known mixing time

bounds of RWM (Andrieu et al. 2024)

54 / 81

16 / 22

Complexity OPA
• TK,N: number of iterations of OPA for simulating N steps with K processors

(Simplified) Theorem 2

For all N ∈ N, K = O(
√
d), we have that TK,N = O(N

K
) with high probability.

• By the union bound, the first� happens at step i with probabilityO(i2/d). →
K = ���HHHO(d)O(

√
d).

Corollary 1 (Complexity OPA)

For log-concave distributions, the Online Picard algorithm with K = O(
√
d)

outputs a random variable X , with ‖L(X)− π‖TV ≤ ε after

J = O
(

L

m

√
d polylog(ε−1)

)
parallel iterations.

• Corollary 1 was obtained by combining Theorem 2 with known mixing time

bounds of RWM (Andrieu et al. 2024)

55 / 81

17 / 22

Approximate OPA (1)

• Bottleneck OPA: even though the probability of� at step i isO(i/d) (Theorem
1), the first� happens much earlier at step i = O(

√
d).

• However, the probability of having at most r-fraction of�, r ∈ (0, 1) isO(d).

• In the Approximate OPA we tolerates a fixed (and small) percentage r ∈ [0, 1]
of errors:

i K 2K N

j
i K 2K N

j

Figure 5: Illustration of OPA (left) vs AOPA with r = 50% (right). The color of the (j, i) entry

represents the state of the ith step: � for f(X
(j)
i ,Wi) = f(X

(j−1)
i ,Wi) (correct guess),� for

f(X
(j)
i ,Wi) 6= f(X

(j−1)
i ,Wi) (error). � where no processor has been allocated.

56 / 81

17 / 22

Approximate OPA (1)

• Bottleneck OPA: even though the probability of � at step i isO(i/d) (Theorem
1), the first� happens much earlier at step i = O(

√
d).

• However, the probability of having at most r-fraction of�, r ∈ (0, 1) isO(d).

• In the Approximate OPA we tolerates a fixed (and small) percentage r ∈ [0, 1]
of errors:

i K 2K N

j
i K 2K N

j

Figure 5: Illustration of OPA (left) vs AOPA with r = 50% (right). The color of the (j, i) entry

represents the state of the ith step: � for f(X
(j)
i ,Wi) = f(X

(j−1)
i ,Wi) (correct guess),� for

f(X
(j)
i ,Wi) 6= f(X

(j−1)
i ,Wi) (error). � where no processor has been allocated.

57 / 81

17 / 22

Approximate OPA (1)

• Bottleneck OPA: even though the probability of � at step i isO(i/d) (Theorem
1), the first� happens much earlier at step i = O(

√
d).

• However, the probability of having at most r-fraction of�, r ∈ (0, 1) isO(d).

• In the Approximate OPA we tolerates a fixed (and small) percentage r ∈ [0, 1]
of errors:

i K 2K N

j
i K 2K N

j

Figure 5: Illustration of OPA (left) vs AOPA with r = 50% (right). The color of the (j, i) entry

represents the state of the ith step: � for f(X
(j)
i ,Wi) = f(X

(j−1)
i ,Wi) (correct guess),� for

f(X
(j)
i ,Wi) 6= f(X

(j−1)
i ,Wi) (error). � where no processor has been allocated.

58 / 81

17 / 22

Approximate OPA (1)

• Bottleneck OPA: even though the probability of � at step i isO(i/d) (Theorem
1), the first� happens much earlier at step i = O(

√
d).

• However, the probability of having at most r-fraction of�, r ∈ (0, 1) isO(d).

• In the Approximate OPA we tolerates a fixed (and small) percentage r ∈ [0, 1]
of errors:

i K 2K N

j
i K 2K N

j

Figure 5: Illustration of OPA (left) vs AOPA with r = 50% (right). The color of the (j, i) entry

represents the state of the ith step: � for f(X
(j)
i ,Wi) = f(X

(j−1)
i ,Wi) (correct guess),� for

f(X
(j)
i ,Wi) 6= f(X

(j−1)
i ,Wi) (error). � where no processor has been allocated.

59 / 81

18 / 22

Approximate OPA (2)

• For r = 0, we recover OPA.

• For at least (1− r)-fraction of increments we have f(X
(j)
i ,Wi) = X

(j)
i+1 − X

(j)
i .

• The error is bounded by the size of Gaussian noise for the remaining steps.

• T
(r)
K,N: number of iterations of AOPA with tolerance r ∈ (0, 1) for simulating N

steps with K processors

(Simplified) Theorem 3

For all N ∈ N, K = O(d), we have that T
(r)
K,N = O(N

K
) with high probability.

these results suggest a complexityO(1) with K = O(d) for AOPA.

• More results can be found in the paper:

– As X0 → ∞, the probability of�→ 0 (→ Instantaneous convergence in the tails).

– All convergence results also apply to Metropolis within Gibbs.

– For Metropolis within Gibbs, we have instantaneous convergence for isotropic

Gaussian targets, suggesting better performance for well-conditioned targets.

60 / 81

18 / 22

Approximate OPA (2)

• For r = 0, we recover OPA.

• For at least (1− r)-fraction of increments we have f(X
(j)
i ,Wi) = X

(j)
i+1 − X

(j)
i .

• The error is bounded by the size of Gaussian noise for the remaining steps.

• T
(r)
K,N: number of iterations of AOPA with tolerance r ∈ (0, 1) for simulating N

steps with K processors

(Simplified) Theorem 3

For all N ∈ N, K = O(d), we have that T
(r)
K,N = O(N

K
) with high probability.

these results suggest a complexityO(1) with K = O(d) for AOPA.

• More results can be found in the paper:

– As X0 → ∞, the probability of�→ 0 (→ Instantaneous convergence in the tails).

– All convergence results also apply to Metropolis within Gibbs.

– For Metropolis within Gibbs, we have instantaneous convergence for isotropic

Gaussian targets, suggesting better performance for well-conditioned targets.

61 / 81

18 / 22

Approximate OPA (2)

• For r = 0, we recover OPA.

• For at least (1− r)-fraction of increments we have f(X
(j)
i ,Wi) = X

(j)
i+1 − X

(j)
i .

• The error is bounded by the size of Gaussian noise for the remaining steps.

• T
(r)
K,N: number of iterations of AOPA with tolerance r ∈ (0, 1) for simulating N

steps with K processors

(Simplified) Theorem 3

For all N ∈ N, K = O(d), we have that T
(r)
K,N = O(N

K
) with high probability.

these results suggest a complexityO(1) with K = O(d) for AOPA.

• More results can be found in the paper:

– As X0 → ∞, the probability of�→ 0 (→ Instantaneous convergence in the tails).

– All convergence results also apply to Metropolis within Gibbs.

– For Metropolis within Gibbs, we have instantaneous convergence for isotropic

Gaussian targets, suggesting better performance for well-conditioned targets.

62 / 81

18 / 22

Approximate OPA (2)

• For r = 0, we recover OPA.

• For at least (1− r)-fraction of increments we have f(X
(j)
i ,Wi) = X

(j)
i+1 − X

(j)
i .

• The error is bounded by the size of Gaussian noise for the remaining steps.

• T
(r)
K,N: number of iterations of AOPA with tolerance r ∈ (0, 1) for simulating N

steps with K processors

(Simplified) Theorem 3

For all N ∈ N, K = O(d), we have that T
(r)
K,N = O(N

K
) with high probability.

these results suggest a complexityO(1) with K = O(d) for AOPA.

• More results can be found in the paper:

– As X0 → ∞, the probability of�→ 0 (→ Instantaneous convergence in the tails).

– All convergence results also apply to Metropolis within Gibbs.

– For Metropolis within Gibbs, we have instantaneous convergence for isotropic

Gaussian targets, suggesting better performance for well-conditioned targets.

63 / 81

18 / 22

Approximate OPA (2)

• For r = 0, we recover OPA.

• For at least (1− r)-fraction of increments we have f(X
(j)
i ,Wi) = X

(j)
i+1 − X

(j)
i .

• The error is bounded by the size of Gaussian noise for the remaining steps.

• T
(r)
K,N: number of iterations of AOPA with tolerance r ∈ (0, 1) for simulating N

steps with K processors

(Simplified) Theorem 3

For all N ∈ N, K = O(d), we have that T
(r)
K,N = O(N

K
) with high probability.

these results suggest a complexityO(1) with K = O(d) for AOPA.

• More results can be found in the paper:

– As X0 → ∞, the probability of�→ 0 (→ Instantaneous convergence in the tails).

– All convergence results also apply to Metropolis within Gibbs.

– For Metropolis within Gibbs, we have instantaneous convergence for isotropic

Gaussian targets, suggesting better performance for well-conditioned targets.

64 / 81

18 / 22

Approximate OPA (2)

• For r = 0, we recover OPA.

• For at least (1− r)-fraction of increments we have f(X
(j)
i ,Wi) = X

(j)
i+1 − X

(j)
i .

• The error is bounded by the size of Gaussian noise for the remaining steps.

• T
(r)
K,N: number of iterations of AOPA with tolerance r ∈ (0, 1) for simulating N

steps with K processors

(Simplified) Theorem 3

For all N ∈ N, K = O(d), we have that T
(r)
K,N = O(N

K
) with high probability.

these results suggest a complexityO(1) with K = O(d) for AOPA.

• More results can be found in the paper:

– As X0 → ∞, the probability of�→ 0 (→ Instantaneous convergence in the tails).

– All convergence results also apply to Metropolis within Gibbs.

– For Metropolis within Gibbs, we have instantaneous convergence for isotropic

Gaussian targets, suggesting better performance for well-conditioned targets.

65 / 81

18 / 22

Approximate OPA (2)

• For r = 0, we recover OPA.

• For at least (1− r)-fraction of increments we have f(X
(j)
i ,Wi) = X

(j)
i+1 − X

(j)
i .

• The error is bounded by the size of Gaussian noise for the remaining steps.

• T
(r)
K,N: number of iterations of AOPA with tolerance r ∈ (0, 1) for simulating N

steps with K processors

(Simplified) Theorem 3

For all N ∈ N, K = O(d), we have that T
(r)
K,N = O(N

K
) with high probability.

these results suggest a complexityO(1) with K = O(d) for AOPA.

• More results can be found in the paper:

– As X0 → ∞, the probability of�→ 0 (→ Instantaneous convergence in the tails).

– All convergence results also apply to Metropolis within Gibbs.

– For Metropolis within Gibbs, we have instantaneous convergence for isotropic

Gaussian targets, suggesting better performance for well-conditioned targets.

66 / 81

18 / 22

Approximate OPA (2)

• For r = 0, we recover OPA.

• For at least (1− r)-fraction of increments we have f(X
(j)
i ,Wi) = X

(j)
i+1 − X

(j)
i .

• The error is bounded by the size of Gaussian noise for the remaining steps.

• T
(r)
K,N: number of iterations of AOPA with tolerance r ∈ (0, 1) for simulating N

steps with K processors

(Simplified) Theorem 3

For all N ∈ N, K = O(d), we have that T
(r)
K,N = O(N

K
) with high probability.

these results suggest a complexityO(1) with K = O(d) for AOPA.

• More results can be found in the paper:

– As X0 → ∞, the probability of�→ 0 (→ Instantaneous convergence in the tails).

– All convergence results also apply to Metropolis within Gibbs.

– For Metropolis within Gibbs, we have instantaneous convergence for isotropic

Gaussian targets, suggesting better performance for well-conditioned targets.

67 / 81

18 / 22

Approximate OPA (2)

• For r = 0, we recover OPA.

• For at least (1− r)-fraction of increments we have f(X
(j)
i ,Wi) = X

(j)
i+1 − X

(j)
i .

• The error is bounded by the size of Gaussian noise for the remaining steps.

• T
(r)
K,N: number of iterations of AOPA with tolerance r ∈ (0, 1) for simulating N

steps with K processors

(Simplified) Theorem 3

For all N ∈ N, K = O(d), we have that T
(r)
K,N = O(N

K
) with high probability.

these results suggest a complexityO(1) with K = O(d) for AOPA.

• More results can be found in the paper:

– As X0 → ∞, the probability of�→ 0 (→ Instantaneous convergence in the tails).

– All convergence results also apply to Metropolis within Gibbs.

– For Metropolis within Gibbs, we have instantaneous convergence for isotropic

Gaussian targets, suggesting better performance for well-conditioned targets.

68 / 81

19 / 22

Simulations

69 / 81

20 / 22

Figure 6: Performance of OPA (X̄) and its AOPA (X̄r, r = 0%, . . . , 20%) applied to RWM and MwG

(X̄MwG). Average speedup Ĝ = N/TK,N , K = d, d = 102, . . . , 103 (Left panel) and d = 200,
K = 2, 3, . . . , 103. Right panel: Average error on 1st (Mr) and 2nd (Er)moment estimation for the

AOPA with r = 0%, . . . , 20%

70 / 81

21 / 22

Conclusion
• Recap:

Algorithm complexity K method

Sequential algorithm O(d) 1 exact

Online Picard O(
√
d) O(

√
d) exact

Approx. Online Picard O(1) O(d) approximate

• The algorithm is simple, offering promising directions to parallelize

computations for Bayesian problems with black-box, expensive models and

no access to gradient information.

• Follow-ups:

– Control of the approximation on π of AOPA

– Extend our results for other Markov chains with piecewise constant increments

x 7→ f(x,w) such as Laplace-Hamiltonian and Barker Metropolis.

– Develop more advanced algorithms combining ”cheap” predictions with Picard

maps (e.g. Parareal framework)

2

71 / 81

21 / 22

Conclusion
• Recap:

Algorithm complexity K method

Sequential algorithm O(d) 1 exact

Online Picard O(
√
d) O(

√
d) exact

Approx. Online Picard O(1) O(d) approximate

• The algorithm is simple, offering promising directions to parallelize

computations for Bayesian problems with black-box, expensive models and

no access to gradient information.

• Follow-ups:

– Control of the approximation on π of AOPA

– Extend our results for other Markov chains with piecewise constant increments

x 7→ f(x,w) such as Laplace-Hamiltonian and Barker Metropolis.

– Develop more advanced algorithms combining ”cheap” predictions with Picard

maps (e.g. Parareal framework)

2

72 / 81

21 / 22

Conclusion
• Recap:

Algorithm complexity K method

Sequential algorithm O(d) 1 exact

Online Picard O(
√
d) O(

√
d) exact

Approx. Online Picard O(1) O(d) approximate

• The algorithm is simple, offering promising directions to parallelize

computations for Bayesian problems with black-box, expensive models and

no access to gradient information.

• Follow-ups:

– Control of the approximation on π of AOPA

– Extend our results for other Markov chains with piecewise constant increments

x 7→ f(x,w) such as Laplace-Hamiltonian and Barker Metropolis.

– Develop more advanced algorithms combining ”cheap” predictions with Picard

maps (e.g. Parareal framework)

2

73 / 81

21 / 22

Conclusion
• Recap:

Algorithm complexity K method

Sequential algorithm O(d) 1 exact

Online Picard O(
√
d) O(

√
d) exact

Approx. Online Picard O(1) O(d) approximate

• The algorithm is simple, offering promising directions to parallelize

computations for Bayesian problems with black-box, expensive models and

no access to gradient information.

• Follow-ups:

– Control of the approximation on π of AOPA

– Extend our results for other Markov chains with piecewise constant increments

x 7→ f(x,w) such as Laplace-Hamiltonian and Barker Metropolis.

– Develop more advanced algorithms combining ”cheap” predictions with Picard

maps (e.g. Parareal framework)

2

74 / 81

21 / 22

Conclusion
• Recap:

Algorithm complexity K method

Sequential algorithm O(d) 1 exact

Online Picard O(
√
d) O(

√
d) exact

Approx. Online Picard O(1) O(d) approximate

• The algorithm is simple, offering promising directions to parallelize

computations for Bayesian problems with black-box, expensive models and

no access to gradient information.

• Follow-ups:

– Control of the approximation on π of AOPA

– Extend our results for other Markov chains with piecewise constant increments

x 7→ f(x,w) such as Laplace-Hamiltonian and Barker Metropolis.

– Develop more advanced algorithms combining ”cheap” predictions with Picard

maps (e.g. Parareal framework)

2

75 / 81

22 / 22

Andrieu, Christophe et al. (2024). “Explicit convergence bounds for

Metropolis Markov chains: isoperimetry, spectral gaps and profiles”. In: The

Annals of Applied Probability 34.4, pp. 4022–4071.

Grazzi, Sebastiano and Giacomo Zanella (2025). Parallel computations for

Metropolis Markov chains with Picard maps. arXiv: 2506.09762 [stat.CO].
URL: https://arxiv.org/abs/2506.09762.
Pozza, Francesco and Giacomo Zanella (2024). “On the fundamental

limitations of multiproposal Markov chain Monte Carlo algorithms”. In: arXiv

preprint arXiv:2410.23174.

76 / 81

https://arxiv.org/abs/2506.09762
https://arxiv.org/abs/2506.09762

23 / 22

Contraction of the Picard map

77 / 81

24 / 22

Lemma 1

Under Assumptions 3, for every x, y ∈ X ,

P(f(x,W) 6= f(y,W)) ≤
hL1/2

d1/2

(√
2

π
+

hγ

2

)
‖x − y‖, W ∼ ν.

Lemma 2

Under Assumption 2 and for all x, y ∈ X K+1 with x0 = y0 , w0 ∈ W and 1 < i ≤ d,

E[‖Φi(x,W)− Φi(y,W)‖2] ≤
15h2

L

i−1∑
`=1

(P(f(x`,W`) 6= f(y`,W`)) + δ(d)) .

Lemma 3

Let A(j) = max`≤i P(f(X
(j)
` ,W`) 6= f(X`,W`)), j ∈ {0, 1, . . . } . Under Assumption 2, we have

A
(j+1) ≤

√
c0

i

d

(
A(j) + δ(d)

)
. (3)

Lemma 4

Let (aj)j=0,1,... be a non-negative sequence satisfying a0 = 1 and aj+1 ≤ b
√

aj + ε for some fixed

b, ε > 0 and all j ≥ 0. Then aj ≤ b2 + ε+ 2−j for all j ≥ 0.

Lemma 3 and 4 implies Theorem 1, i.e.

P(f(X(j)i ,Wi) 6= f(Xi,Wi) | X0 = x0,W0 = w0) ≤ c0
i

d
+ δ(d) + 2−j

78 / 81

24 / 22

Lemma 1

Under Assumptions 3, for every x, y ∈ X ,

P(f(x,W) 6= f(y,W)) ≤
hL1/2

d1/2

(√
2

π
+

hγ

2

)
‖x − y‖, W ∼ ν.

Lemma 2

Under Assumption 2 and for all x, y ∈ X K+1 with x0 = y0 , w0 ∈ W and 1 < i ≤ d,

E[‖Φi(x,W)− Φi(y,W)‖2] ≤
15h2

L

i−1∑
`=1

(P(f(x`,W`) 6= f(y`,W`)) + δ(d)) .

Lemma 3

Let A(j) = max`≤i P(f(X
(j)
` ,W`) 6= f(X`,W`)), j ∈ {0, 1, . . . } . Under Assumption 2, we have

A
(j+1) ≤

√
c0

i

d

(
A(j) + δ(d)

)
. (3)

Lemma 4

Let (aj)j=0,1,... be a non-negative sequence satisfying a0 = 1 and aj+1 ≤ b
√

aj + ε for some fixed

b, ε > 0 and all j ≥ 0. Then aj ≤ b2 + ε+ 2−j for all j ≥ 0.

Lemma 3 and 4 implies Theorem 1, i.e.

P(f(X(j)i ,Wi) 6= f(Xi,Wi) | X0 = x0,W0 = w0) ≤ c0
i

d
+ δ(d) + 2−j

79 / 81

24 / 22

Lemma 1

Under Assumptions 3, for every x, y ∈ X ,

P(f(x,W) 6= f(y,W)) ≤
hL1/2

d1/2

(√
2

π
+

hγ

2

)
‖x − y‖, W ∼ ν.

Lemma 2

Under Assumption 2 and for all x, y ∈ X K+1 with x0 = y0 , w0 ∈ W and 1 < i ≤ d,

E[‖Φi(x,W)− Φi(y,W)‖2] ≤
15h2

L

i−1∑
`=1

(P(f(x`,W`) 6= f(y`,W`)) + δ(d)) .

Lemma 3

Let A(j) = max`≤i P(f(X
(j)
` ,W`) 6= f(X`,W`)), j ∈ {0, 1, . . . } . Under Assumption 2, we have

A
(j+1) ≤

√
c0

i

d

(
A(j) + δ(d)

)
. (3)

Lemma 4

Let (aj)j=0,1,... be a non-negative sequence satisfying a0 = 1 and aj+1 ≤ b
√

aj + ε for some fixed

b, ε > 0 and all j ≥ 0. Then aj ≤ b2 + ε+ 2−j for all j ≥ 0.

Lemma 3 and 4 implies Theorem 1, i.e.

P(f(X(j)i ,Wi) 6= f(Xi,Wi) | X0 = x0,W0 = w0) ≤ c0
i

d
+ δ(d) + 2−j

80 / 81

24 / 22

Lemma 1

Under Assumptions 3, for every x, y ∈ X ,

P(f(x,W) 6= f(y,W)) ≤
hL1/2

d1/2

(√
2

π
+

hγ

2

)
‖x − y‖, W ∼ ν.

Lemma 2

Under Assumption 2 and for all x, y ∈ X K+1 with x0 = y0 , w0 ∈ W and 1 < i ≤ d,

E[‖Φi(x,W)− Φi(y,W)‖2] ≤
15h2

L

i−1∑
`=1

(P(f(x`,W`) 6= f(y`,W`)) + δ(d)) .

Lemma 3

Let A(j) = max`≤i P(f(X
(j)
` ,W`) 6= f(X`,W`)), j ∈ {0, 1, . . . } . Under Assumption 2, we have

A
(j+1) ≤

√
c0

i

d

(
A(j) + δ(d)

)
. (3)

Lemma 4

Let (aj)j=0,1,... be a non-negative sequence satisfying a0 = 1 and aj+1 ≤ b
√

aj + ε for some fixed

b, ε > 0 and all j ≥ 0. Then aj ≤ b2 + ε+ 2−j for all j ≥ 0.

Lemma 3 and 4 implies Theorem 1, i.e.

P(f(X(j)i ,Wi) 6= f(Xi,Wi) | X0 = x0,W0 = w0) ≤ c0
i

d
+ δ(d) + 2−j

81 / 81

	Overview
	Picard map for Markov chain simulation
	Theoretical results
	Simulations
	References
	Contraction of the Picard map

