Parallel computations for Metropolis Markov chains with Picard maps

Sebastiano Grazzi

with Giacomo Zanella Department of Decision Science, Bocconi University, Milan

July 26, 2025

Outline

- Overview
- Picard Map Φ for Markov chain simulation
- · Main theoretical results
- Simulations
- (Technical Appendix, only if time allows) Contraction of Φ

S. Grazzi, G. Zanella, *Parallel computations for Metropolis Markov chains with Picard maps.* arXiv:2506.09762

Zeroth-order Parallel Sampling

- **Objective**: Sample from a distribution $\pi(dx) = C \exp(-V(x)) dx$ on $\mathcal{X} = \mathbb{R}^d$, for some unknown constant C.
 - Motivation: Bayesian Inference, statistical physics,...

Zeroth-order Parallel Sampling

- **Objective**: Sample from a distribution $\pi(dx) = C \exp(-V(x)) dx$ on $\mathcal{X} = \mathbb{R}^d$, for some unknown constant C.
 - Motivation: Bayesian Inference, statistical physics,...
- · Setting:
 - Zeroth-order methods: point-wise evaluation of V (and not ∇V, which is typical for first-order methods)
 - **Parallel computing**: $K \ge 1$ processors that can work in parallel to execute the task

Zeroth-order Parallel Sampling

- **Objective**: Sample from a distribution $\pi(dx) = C \exp(-V(x)) dx$ on $\mathcal{X} = \mathbb{R}^d$, for some unknown constant C.
 - Motivation: Bayesian Inference, statistical physics,...
- · Setting:
 - Zeroth-order methods: point-wise evaluation of V (and not ∇V, which is typical for first-order methods)
 - **Parallel computing**: $\mathit{K} \geq 1$ processors that can work in parallel to execute the task

Performance

(Parallel round) complexity: number of point-wise evaluations of V per parallel processor in order to obtain samples close to π (e.g. in total variation).

• Important quantities: dimension d, number of processors K.

Diagram Parallel sampling

Figure 1: One parallel iteration of the algorithm

• Approach: Markov chain Monte Carlo i.e. simulate a Markov chain

$$X_{i+1} = X_i + f(X_i, W_i),$$
 $i = 0, 1, ...$ (1)

whose limiting distribution coincides with π , for some i.i.d random variables W_0, W_1, \dots

 $^{^{1}}$ the notation ${\cal O}$ ignores constants and log terms

• Approach: Markov chain Monte Carlo i.e. simulate a Markov chain

$$X_{i+1} = X_i + f(X_i, W_i),$$
 $i = 0, 1, ...$ (1)

whose limiting distribution coincides with π , for some i.i.d random variables W_0, W_1, \dots

• Random Walk Metropolis (RWM): $W = (Z, U), U \sim \mathcal{U}([0, 1]), Z \sim \mathcal{N}(0, \xi^2),$

$$f(x, W) = ZB(x, U, Z)$$
 with $B(x, u, z) = \mathbf{1} (\pi(x+z)/\pi(x) \ge u)$.

¹ the notation \mathcal{O} ignores constants and log terms

• Approach: Markov chain Monte Carlo i.e. simulate a Markov chain

$$X_{i+1} = X_i + f(X_i, W_i),$$
 $i = 0, 1, ...$ (1)

whose limiting distribution coincides with π , for some i.i.d random variables W_0, W_1, \ldots

• Random Walk Metropolis (RWM): $W = (Z, U), U \sim \mathcal{U}([0, 1]), Z \sim \mathcal{N}(0, \xi^2),$

$$f(x, W) = ZB(x, U, Z)$$
 with $B(x, u, z) = \mathbf{1} (\pi(x+z)/\pi(x) \ge u)$.

• State of the art for log-concave distributions and sequential algorithms (K = 1) with complexity $\mathcal{O}(d)^1$ (Andrieu et al. 2024).

¹ the notation \mathcal{O} ignores constants and log terms

• Approach: Markov chain Monte Carlo i.e. simulate a Markov chain

$$X_{i+1} = X_i + f(X_i, W_i),$$
 $i = 0, 1, ...$ (1)

whose limiting distribution coincides with π , for some i.i.d random variables W_0, W_1, \dots

• Random Walk Metropolis (RWM): W = (Z, U), $U \sim \mathcal{U}([0, 1])$, $Z \sim \mathcal{N}(0, \xi^2)$,

$$f(x, W) = ZB(x, U, Z)$$
 with $B(x, u, z) = \mathbf{1} (\pi(x+z)/\pi(x) \ge u)$.

• State of the art for log-concave distributions and sequential algorithms (K = 1) with complexity $\mathcal{O}(d)^1$ (Andrieu et al. 2024).

How do we parallelize the recursion in (1), given its sequential nature?

 $^{^{1}}$ the notation ${\cal O}$ ignores constants and log terms

- · Previous attempts:
 - **Pre-fetching**: computes V in each future potential state of the Markov chain for $j \ge 1$ steps ahead.
 - Caveat: number of potential states grows exponentially with j.

Previous attempts:

- **Pre-fetching**: computes V in each future potential state of the Markov chain for $j \ge 1$ steps ahead.
 - Caveat: number of potential states grows exponentially with j.
- Multiple-try: at each interation, simulates K proposal states and computes V in each state.
 - Caveat: Gap(Multiple-try) \leq Gap(RWM) $\log(K)$ (Pozza and Zanella 2024).

· Previous attempts:

- **Pre-fetching**: computes V in each future potential state of the Markov chain for $j \geq 1$ steps ahead.
 - Caveat: number of potential states grows exponentially with j.
- Multiple-try: at each interation, simulates K proposal states and computes V in each state.
 - Caveat: Gap(Multiple-try) \leq Gap(RWM) $\log(K)$ (Pozza and Zanella 2024).
- ightarrow Complexity $\mathcal{O}(d/log(K))
 ightarrow K$ has to grow exponentially with d

- · Previous attempts:
 - **Pre-fetching**: computes V in each future potential state of the Markov chain for $j \ge 1$ steps ahead.
 - Caveat: number of potential states grows exponentially with j.
 - Multiple-try: at each interation, simulates K proposal states and computes V in each state.
 - Caveat: Gap(Multiple-try) \leq Gap(RWM) $\log(K)$ (Pozza and Zanella 2024).
 - ightarrow Complexity $\mathcal{O}(d/log(K))
 ightarrow K$ has to grow exponentially with d
- **Best scenarios**: no waste of computational power: from $\mathcal{O}(d)$ to $\mathcal{O}(d/K)$.

· Previous attempts:

- **Pre-fetching**: computes V in each future potential state of the Markov chain for $j \geq 1$ steps ahead.
 - Caveat: number of potential states grows exponentially with j.
- Multiple-try: at each interation, simulates K proposal states and computes V in each state.
 - Caveat: Gap(Multiple-try) \leq Gap(RWM) $\log(K)$ (Pozza and Zanella 2024).
- ightarrow Complexity $\mathcal{O}(d/log(K))
 ightarrow K$ has to grow exponentially with d
- **Best scenarios**: no waste of computational power: from $\mathcal{O}(d)$ to $\mathcal{O}(d/K)$.
- · Preview of our results:

Algorithm	complexity	K	method
Sequential algorithm	$\mathcal{O}(d)$	1	exact
Online Picard	$\mathcal{O}(\sqrt{d})$	$\mathcal{O}(\sqrt{d})$	exact
Approx. Online Picard	$\mathcal{O}(1)$	$\mathcal{O}(d)$	approximate

Picard map for Markov chain simulation

• X is also defined by

$$X_i = X_0 + \sum_{\ell=0}^{i-1} f(X_\ell, W_\ell), \qquad i = 1, 2, \dots$$
 (2)

X is also defined by

$$X_i = X_0 + \sum_{\ell=0}^{i-1} f(X_\ell, W_\ell), \qquad i = 1, 2, \dots$$
 (2)

Picard map Φ

 $\Phi \colon \mathcal{X}^{\kappa+1} \times \mathcal{W}^{\kappa} \mapsto \mathcal{X}^{\kappa+1}$ takes as input a trajectory X and outputs a new trajectory $X' = (X'_0, \dots, X'_{\kappa}) = \Phi(X, W)$ defined as

$$X_i' = \Phi_i(X, W) = \begin{cases} X_0 & i = 0 \\ X_0 + \sum_{\ell=0}^{i-1} f(X_\ell, W_\ell) & 0 < i \le K. \end{cases}$$

X is also defined by

$$X_i = X_0 + \sum_{\ell=0}^{i-1} f(X_\ell, W_\ell), \qquad i = 1, 2, \dots$$
 (2)

Picard map Φ

 $\Phi \colon \mathcal{X}^{\mathit{K}+1} \times \mathcal{W}^{\mathit{K}} \mapsto \mathcal{X}^{\mathit{K}+1}$ takes as input a trajectory X and outputs a new trajectory $\mathit{X}' = (\mathit{X}'_0, \ldots, \mathit{X}'_{\mathit{K}}) = \Phi(\mathit{X}, \mathit{W})$ defined as

$$X_i' = \Phi_i(X, W) = \begin{cases} X_0 & i = 0 \\ X_0 + \sum_{\ell=0}^{i-1} f(X_\ell, W_\ell) & 0 < i \le K. \end{cases}$$

• The *K* calls to the function *f* can be executed in parallel.

X is also defined by

$$X_i = X_0 + \sum_{\ell=0}^{i-1} f(X_\ell, W_\ell), \qquad i = 1, 2, \dots$$
 (2)

Picard map Φ

 $\Phi \colon \mathcal{X}^{K+1} \times \mathcal{W}^K \mapsto \mathcal{X}^{K+1}$ takes as input a trajectory X and outputs a new trajectory $X' = (X'_0, \dots, X'_K) = \Phi(X, W)$ defined as

$$X_i' = \Phi_i(X, W) = \begin{cases} X_0 & i = 0\\ X_0 + \sum_{\ell=0}^{i-1} f(X_\ell, W_\ell) & 0 < i \le K. \end{cases}$$

- The K calls to the function f can be executed in parallel.
- Given $W \in \mathcal{W}^K$,
 - $x \to \Phi(x, W)$ is deterministic.
 - the **fixed point** *X* satisfying $X = \Phi(X, W)$ is the solution to (2).

X is also defined by

$$X_i = X_0 + \sum_{\ell=0}^{i-1} f(X_\ell, W_\ell), \qquad i = 1, 2, \dots$$
 (2)

Picard map Φ

 $\Phi \colon \mathcal{X}^{K+1} \times \mathcal{W}^K \mapsto \mathcal{X}^{K+1}$ takes as input a trajectory X and outputs a new trajectory $X' = (X'_0, \dots, X'_K) = \Phi(X, W)$ defined as

$$X_i' = \Phi_i(X, W) = \begin{cases} X_0 & i = 0 \\ X_0 + \sum_{\ell=0}^{i-1} f(X_\ell, W_\ell) & 0 < i \le K. \end{cases}$$

- The K calls to the function f can be executed in parallel.
- Given $W \in \mathcal{W}^K$,
 - $x \to \Phi(x, W)$ is deterministic.
 - the **fixed point** X satisfying $X = \Phi(X, W)$ is the solution to (2).
- Compute X as the limit of the recursion $X^{(j)} = \Phi(X^{(j-1)}, W)$ for j = 1, 2, ...

Diagram Picard recursion

Figure 2: One parallel iteration of Picard recursion

Figure 3: $X_1^{(i)}, X_2^{(i)}, \ldots$ of the Picard recursion for K=1000 steps applied to a d=100 dimensional RWM Markov chain. Gray line: Fixed point X_1, \ldots, X_K . The dashed line corresponds to the part of the trajectory that has converged to its fixed point.

Figure 3: $X_1^{(i)}, X_2^{(i)}, \ldots$ of the Picard recursion for K=1000 steps applied to a d=100 dimensional RWM Markov chain. Gray line: Fixed point X_1, \ldots, X_K . The dashed line corresponds to the part of the trajectory that has converged to its fixed point.

Figure 3: $X_1^{(i)}, X_2^{(i)}, \ldots$ of the Picard recursion for K=1000 steps applied to a d=100 dimensional RWM Markov chain. Gray line: Fixed point X_1, \ldots, X_K . The dashed line corresponds to the part of the trajectory that has converged to its fixed point.

Figure 3: $X_1^{(i)}, X_2^{(i)}, \ldots$ of the Picard recursion for K=1000 steps applied to a d=100 dimensional RWM Markov chain. Gray line: Fixed point X_1, \ldots, X_K . The dashed line corresponds to the part of the trajectory that has converged to its fixed point.

Figure 3: $X_1^{(i)}, X_2^{(i)}, \ldots$ of the Picard recursion for K=1000 steps applied to a d=100 dimensional RWM Markov chain. Gray line: Fixed point X_1, \ldots, X_K . The dashed line corresponds to the part of the trajectory that has converged to its fixed point.

Figure 3: $X_1^{(i)}, X_2^{(i)}, \ldots$ of the Picard recursion for K=1000 steps applied to a d=100 dimensional RWM Markov chain. Gray line: Fixed point X_1, \ldots, X_K . The dashed line corresponds to the part of the trajectory that has converged to its fixed point.

Figure 3: $X_1^{(i)}, X_2^{(i)}, \ldots$ of the Picard recursion for K=1000 steps applied to a d=100 dimensional RWM Markov chain. Gray line: Fixed point X_1, \ldots, X_K . The dashed line corresponds to the part of the trajectory that has converged to its fixed point.

Figure 3: $X_1^{(i)}, X_2^{(i)}, \ldots$ of the Picard recursion for K=1000 steps applied to a d=100 dimensional RWM Markov chain. Gray line: Fixed point X_1, \ldots, X_K . The dashed line corresponds to the part of the trajectory that has converged to its fixed point.

Figure 3: $X_1^{(i)}, X_2^{(i)}, \ldots$ of the Picard recursion for K=1000 steps applied to a d=100 dimensional RWM Markov chain. Gray line: Fixed point X_1, \ldots, X_K . The dashed line corresponds to the part of the trajectory that has converged to its fixed point.

Figure 3: $X_1^{(i)}, X_2^{(i)}, \ldots$ of the Picard recursion for K=1000 steps applied to a d=100 dimensional RWM Markov chain. Gray line: Fixed point X_1, \ldots, X_K . The dashed line corresponds to the part of the trajectory that has converged to its fixed point.

Figure 3: $X_1^{(i)}, X_2^{(i)}, \ldots$ of the Picard recursion for K=1000 steps applied to a d=100 dimensional RWM Markov chain. Gray line: Fixed point X_1, \ldots, X_K . The dashed line corresponds to the part of the trajectory that has converged to its fixed point.

Figure 3: $X_1^{(i)}, X_2^{(i)}, \ldots$ of the Picard recursion for K=1000 steps applied to a d=100 dimensional RWM Markov chain. Gray line: Fixed point X_1, \ldots, X_K . The dashed line corresponds to the part of the trajectory that has converged to its fixed point.

Figure 3: $X_1^{(i)}, X_2^{(i)}, \ldots$ of the Picard recursion for K=1000 steps applied to a d=100 dimensional RWM Markov chain. Gray line: Fixed point X_1, \ldots, X_K . The dashed line corresponds to the part of the trajectory that has converged to its fixed point.

Illustration Picard map

Figure 3: $X_1^{(i)}, X_2^{(i)}, \ldots$ of the Picard recursion for K=1000 steps applied to a d=100 dimensional RWM Markov chain. Gray line: Fixed point X_1, \ldots, X_K . The dashed line corresponds to the part of the trajectory that has converged to its fixed point.

Picard map Φ

• We simulated K = 1000 steps of RWM in $j = 13 \ll K$ (parallel) iterations, trading the use of parallel computing for a shorter run-time.

- We simulated K = 1000 steps of RWM in $j = 13 \ll K$ (parallel) iterations, trading the use of parallel computing for a shorter run-time.
- The Picard map was previously considered for ODE/PDE:

Model	N/d	$x \to f(x) \text{ or } x \mapsto f(x, w)$	Method
ODE/PDE	large	smooth	approx.
SDE (ULA, diff. models)	constant	smooth	approx.
RWM	constant	piecewise constant	exact

Picard map Φ

- We simulated K = 1000 steps of RWM in $j = 13 \ll K$ (parallel) iterations, trading the use of parallel computing for a shorter run-time.
- The Picard map was previously considered for ODE/PDE:

Model	N/d	$x \to f(x) \text{ or } x \mapsto f(x, w)$	Method
ODE/PDE	large	smooth	approx.
SDE (ULA, diff. models)	constant	smooth	approx.
RWM	constant	piecewise constant	exact

 Blessing of dimensionality for RWM: the convergence of Picard for RWM improves in high dimensions as all increments become approximately orthogonal with each other.

Picard map Φ

- We simulated K = 1000 steps of RWM in $j = 13 \ll K$ (parallel) iterations, trading the use of parallel computing for a shorter run-time.
- The Picard map was previously considered for ODE/PDE:

Model	N/d	$x \to f(x) \text{ or } x \mapsto f(x, w)$	Method
ODE/PDE	large	smooth	approx.
SDE (ULA, diff. models)	constant	smooth	approx.
RWM	constant	piecewise constant	exact

- Blessing of dimensionality for RWM: the convergence of Picard for RWM improves in high dimensions as all increments become approximately orthogonal with each other.
- Piecewise constant $x \mapsto f(x, w)$:
 - The contraction of the Picard map for RWM is **non-standard**.
 - $X \mapsto \Phi(X, W)$ for RWM is constant in a neighborhood of its fixed point.
 - The fixed point of Φ can be reached exactly.

Figure 4: The color of the (j,i) entry represents the state of the ith step: \blacksquare for $f(X_i^{(j)},W_i)=f(X_i^{(j-1)},W_i)$ (correct guess), \blacksquare for $f(X_i^{(j)},W_i)\neq f(X_i^{(j-1)},W_i)$ (error). \blacksquare where no processor has been allocated. \blacksquare : number of steps simulated according to RWM.

Figure 4: The color of the (j,i) entry represents the state of the ith step: \blacksquare for $f(X_i^{(j)},W_i)=f(X_i^{(j-1)},W_i)$ (correct guess), \blacksquare for $f(X_i^{(j)},W_i)\neq f(X_i^{(j-1)},W_i)$ (error). \blacksquare where no processor has been allocated. \blacksquare : number of steps simulated according to RWM.

Figure 4: The color of the (j,i) entry represents the state of the ith step: \blacksquare for $f(X_i^{(j)},W_i)=f(X_i^{(j-1)},W_i)$ (correct guess), \blacksquare for $f(X_i^{(j)},W_i)\neq f(X_i^{(j-1)},W_i)$ (error). \blacksquare where no processor has been allocated. \blacksquare : number of steps simulated according to RWM.

- Key challenges for analyzing the convergence:
 - For each (j, i) square: probability of \blacksquare (error) vs \blacksquare (correct guess).

Figure 4: The color of the (j,i) entry represents the state of the ith step: for $f(X_i^{(j)},W_i)=f(X_i^{(j-1)},W_i)$ (correct guess), for $f(X_i^{(j)},W_i)\neq f(X_i^{(j-1)},W_i)$ (error). where no processor has been allocated.: number of steps simulated according to RWM.

- Key challenges for analyzing the convergence:
 - For each (j, i) square: probability of \blacksquare (error) vs \blacksquare (correct guess).
 - For each row *j*: probability of a strike of n > 1 consecutive (or equivalently the probability of the first ■).

Theoretical results

Probability of an error ()

• Technical assumption: *V* is *L*-smooth and Hessian-Lipschitz.

Probability of an error ()

• Technical assumption: V is L-smooth and Hessian-Lipschitz.

(Simplified) Theorem 1

After $j \ge \log(d)$ steps we have

$$\mathbb{P}(f(X_i^{(j)}, W_i) \neq f(X_i, W_i)) = \mathcal{O}(\frac{i}{d}), \qquad i \leq K.$$

• After $j \ge \log(d)$ iterations, the probability of \blacksquare at square (j,i) is $\mathcal{O}(i/d)$

Probability of an error ()

• Technical assumption: V is L-smooth and Hessian-Lipschitz.

(Simplified) Theorem 1

After $j \ge \log(d)$ steps we have

$$\mathbb{P}(f(X_i^{(j)}, W_i) \neq f(X_i, W_i)) = \mathcal{O}(\frac{i}{d}), \qquad i \leq K.$$

- After $j \ge \log(d)$ iterations, the probability of \square at square (j,i) is $\mathcal{O}(i/d)$
- The probability goes to 0 for $d \to \infty$.

Probability of an error (•)

• Technical assumption: V is L-smooth and Hessian-Lipschitz.

(Simplified) Theorem 1

After $j \ge \log(d)$ steps we have

$$\mathbb{P}(f(X_i^{(j)}, W_i) \neq f(X_i, W_i)) = \mathcal{O}(\frac{i}{d}), \qquad i \leq K.$$

- After $j \ge \log(d)$ iterations, the probability of \blacksquare at square (j,i) is $\mathcal{O}(i/d)$
- The probability goes to 0 for $d \to \infty$.
- The probability is controlled only for $K \leq \mathcal{O}(d)$.

• T_{K.N}: number of iterations of OPA for simulating N steps with K processors

• T_{K.N}: number of iterations of OPA for simulating N steps with K processors

(Simplified) Theorem 2

For all $N \in \mathbb{N}$, $K = \mathcal{O}(\sqrt{d})$, we have that $T_{K,N} = \mathcal{O}(\frac{N}{K})$ with high probability.

• T_{K,N}: number of iterations of OPA for simulating N steps with K processors

(Simplified) Theorem 2

For all $N \in \mathbb{N}$, $K = \mathcal{O}(\sqrt{d})$, we have that $T_{K,N} = \mathcal{O}(\frac{N}{K})$ with high probability.

• By the union bound, the first \blacksquare happens at step i with probability $\mathcal{O}(i^2/d)$. \rightarrow $K = \mathcal{O}(\sqrt{d})$.

• T_{K,N}: number of iterations of OPA for simulating N steps with K processors

(Simplified) Theorem 2

For all $N \in \mathbb{N}$, $K = \mathcal{O}(\sqrt{d})$, we have that $T_{K,N} = \mathcal{O}(\frac{N}{K})$ with high probability.

• By the union bound, the first \blacksquare happens at step i with probability $\mathcal{O}(i^2/d)$. \rightarrow $K = \mathcal{O}(\sqrt{d})$.

Corollary 1 (Complexity OPA)

For log-concave distributions, the Online Picard algorithm with $K = \mathcal{O}(\sqrt{d})$ outputs a random variable X, with $\|\mathcal{L}(X) - \pi\|_{\text{TV}} \le \epsilon$ after

$$J = \mathcal{O}\left(\frac{L}{m}\sqrt{d}\operatorname{polylog}(\epsilon^{-1})\right)$$
 parallel iterations.

 Corollary 1 was obtained by combining Theorem 2 with known mixing time bounds of RWM (Andrieu et al. 2024)

• Bottleneck OPA: even though the probability of \blacksquare at step i is $\mathcal{O}(i/d)$ (Theorem 1), the first \blacksquare happens much earlier at step $i = \mathcal{O}(\sqrt{d})$.

- Bottleneck OPA: even though the probability of \blacksquare at step i is $\mathcal{O}(i/d)$ (Theorem 1), the first \blacksquare happens much earlier at step $i = \mathcal{O}(\sqrt{d})$.
- However, the probability of having at most r-fraction of \blacksquare , $r \in (0,1)$ is $\mathcal{O}(d)$.

- Bottleneck OPA: even though the probability of \blacksquare at step i is $\mathcal{O}(i/d)$ (Theorem 1), the first \blacksquare happens much earlier at step $i = \mathcal{O}(\sqrt{d})$.
- However, the probability of having at most r-fraction of \neg , $r \in (0,1)$ is $\mathcal{O}(d)$.
- In the Approximate OPA we tolerates a fixed (and small) percentage $r \in [0,1]$ of errors:

- Bottleneck OPA: even though the probability of \blacksquare at step i is $\mathcal{O}(i/d)$ (Theorem 1), the first \blacksquare happens much earlier at step $i = \mathcal{O}(\sqrt{d})$.
- However, the probability of having at most r-fraction of \blacksquare , $r \in (0,1)$ is $\mathcal{O}(d)$.
- In the Approximate OPA we tolerates a fixed (and small) percentage $r \in [0,1]$ of errors:

Figure 5: Illustration of OPA (left) vs AOPA with r = 50% (right). The color of the (j, i) entry represents the state of the ith step: \blacksquare for $f(X_i^{(j)}, W_i) = f(X_i^{(j-1)}, W_i)$ (correct guess), \blacksquare for $f(X_i^{(j)}, W_i) \neq f(X_i^{(j-1)}, W_i)$ (error). \blacksquare where no processor has been allocated.

• For r=0, we recover OPA.

- For r = 0, we recover OPA.
- For at least (1-r)-fraction of increments we have $f(X_i^{(j)}, W_i) = X_{i+1}^{(j)} X_i^{(j)}$.

- For r = 0, we recover OPA.
- For at least (1-r)-fraction of increments we have $f(X_i^{(j)},W_i)=X_{i+1}^{(j)}-X_i^{(j)}$.
- The error is bounded by the size of Gaussian noise for the remaining steps.

- For r = 0, we recover OPA.
- For at least (1-r)-fraction of increments we have $f(X_i^{(j)}, W_i) = X_{i+1}^{(j)} X_i^{(j)}$.
- The error is bounded by the size of Gaussian noise for the remaining steps.
- $T_{K,N}^{(r)}$: number of iterations of AOPA with tolerance $r \in (0,1)$ for simulating N steps with K processors

- For r = 0, we recover OPA.
- For at least (1-r)-fraction of increments we have $f(X_i^{(j)}, W_i) = X_{i+1}^{(j)} X_i^{(j)}$.
- The error is bounded by the size of Gaussian noise for the remaining steps.
- $T_{K,N}^{(r)}$: number of iterations of AOPA with tolerance $r \in (0,1)$ for simulating N steps with K processors

(Simplified) Theorem 3

For all $N \in \mathbb{N}$, $K = \mathcal{O}(d)$, we have that $T_{K,N}^{(r)} = \mathcal{O}(\frac{N}{K})$ with high probability.

- For r = 0, we recover OPA.
- For at least (1-r)-fraction of increments we have $f(X_i^{(j)}, W_i) = X_{i+1}^{(j)} X_i^{(j)}$.
- The error is bounded by the size of Gaussian noise for the remaining steps.
- $T_{K,N}^{(r)}$: number of iterations of AOPA with tolerance $r \in (0,1)$ for simulating N steps with K processors

(Simplified) Theorem 3

For all $N \in \mathbb{N}$, $K = \mathcal{O}(d)$, we have that $T_{K,N}^{(r)} = \mathcal{O}(\frac{N}{K})$ with high probability.

these results suggest a complexity $\mathcal{O}(1)$ with $\mathit{K} = \mathcal{O}(\mathit{d})$ for AOPA.

- For r = 0, we recover OPA.
- For at least (1-r)-fraction of increments we have $f(X_i^{(j)}, W_i) = X_{i+1}^{(j)} X_i^{(j)}$.
- The error is bounded by the size of Gaussian noise for the remaining steps.
- $T_{K,N}^{(r)}$: number of iterations of AOPA with tolerance $r \in (0,1)$ for simulating N steps with K processors

(Simplified) Theorem 3

For all $N \in \mathbb{N}$, $K = \mathcal{O}(d)$, we have that $T_{K,N}^{(r)} = \mathcal{O}(\frac{N}{K})$ with high probability.

these results suggest a complexity $\mathcal{O}(1)$ with $\mathcal{K}=\mathcal{O}(d)$ for AOPA.

- More results can be found in the paper:
 - As X_0 → ∞, the probability of \blacksquare → 0 (→ Instantaneous convergence in the tails).

- For r = 0, we recover OPA.
- For at least (1-r)-fraction of increments we have $f(X_i^{(j)}, W_i) = X_{i+1}^{(j)} X_i^{(j)}$.
- The error is bounded by the size of Gaussian noise for the remaining steps.
- $T_{K,N}^{(r)}$: number of iterations of AOPA with tolerance $r \in (0,1)$ for simulating N steps with K processors

(Simplified) Theorem 3

For all $N \in \mathbb{N}$, $K = \mathcal{O}(d)$, we have that $T_{K,N}^{(r)} = \mathcal{O}(\frac{N}{K})$ with high probability.

these results suggest a complexity $\mathcal{O}(1)$ with $\mathit{K} = \mathcal{O}(\mathit{d})$ for AOPA.

- More results can be found in the paper:
 - As $X_0 \to \infty$, the probability of $\blacksquare \to 0$ (\to Instantaneous convergence in the tails).
 - All convergence results also apply to Metropolis within Gibbs.

- For r = 0, we recover OPA.
- For at least (1-r)-fraction of increments we have $f(X_i^{(j)}, W_i) = X_{i+1}^{(j)} X_i^{(j)}$.
- The error is bounded by the size of Gaussian noise for the remaining steps.
- $T_{K,N}^{(r)}$: number of iterations of AOPA with tolerance $r \in (0,1)$ for simulating N steps with K processors

(Simplified) Theorem 3

For all $N \in \mathbb{N}$, $K = \mathcal{O}(d)$, we have that $T_{K,N}^{(r)} = \mathcal{O}(\frac{N}{K})$ with high probability.

these results suggest a complexity $\mathcal{O}(1)$ with $\mathit{K} = \mathcal{O}(\mathit{d})$ for AOPA.

- More results can be found in the paper:
 - As $X_0 \to \infty$, the probability of $\blacksquare \to 0$ (\to Instantaneous convergence in the tails).
 - All convergence results also apply to Metropolis within Gibbs.
 - For Metropolis within Gibbs, we have instantaneous convergence for isotropic Gaussian targets, suggesting better performance for well-conditioned targets.

Simulations

Figure 6: Performance of OPA $(\bar{\textit{X}})$ and its AOPA $(\bar{\textit{X}}_{\textit{f}}, \, r=0\%, \ldots, 20\%)$ applied to RWM and MwG $(\bar{\textit{X}}_{\textit{MwG}})$. Average speedup $\hat{\textit{G}} = \textit{N/T}_{\textit{K},\textit{N}}, \, \textit{K} = \textit{d}, \, \textit{d} = 10^2, \ldots, 10^3$ (Left panel) and d = 200, $\textit{K} = 2, 3, \ldots, 10^3$. Right panel: Average error on 1_{st} $(\mathcal{M}_{\textit{r}})$ and 2_{nd} $(\mathcal{E}_{\textit{r}})$ moment estimation for the AOPA with $\textit{r} = 0\%, \ldots, 20\%$

· Recap:

Algorithm	complexity	К	method
Sequential algorithm	$\mathcal{O}(d)$	1	exact
Online Picard	$\mathcal{O}(\sqrt{d})$	$\mathcal{O}(\sqrt{d})$	exact
Approx. Online Picard	$\mathcal{O}(1)$	$\mathcal{O}(d)$	approximate

· Recap:

Algorithm	complexity	К	method
Sequential algorithm	$\mathcal{O}(d)$	1	exact
Online Picard	$\mathcal{O}(\sqrt{d})$	$\mathcal{O}(\sqrt{d})$	exact
Approx. Online Picard	$\mathcal{O}(1)$	$\mathcal{O}(d)$	approximate

 The algorithm is simple, offering promising directions to parallelize computations for Bayesian problems with black-box, expensive models and no access to gradient information.

· Recap:

Algorithm	complexity	К	method
Sequential algorithm	$\mathcal{O}(d)$	1	exact
Online Picard	$\mathcal{O}(\sqrt{d})$	$\mathcal{O}(\sqrt{d})$	exact
Approx. Online Picard	$\mathcal{O}(1)$	$\mathcal{O}(d)$	approximate

- The algorithm is simple, offering promising directions to parallelize computations for Bayesian problems with black-box, expensive models and no access to gradient information.
- · Follow-ups:
 - Control of the approximation on π of AOPA

· Recap:

Algorithm	complexity	К	method
Sequential algorithm	$\mathcal{O}(d)$	1	exact
Online Picard	$\mathcal{O}(\sqrt{d})$	$\mathcal{O}(\sqrt{d})$	exact
Approx. Online Picard	$\mathcal{O}(1)$	$\mathcal{O}(d)$	approximate

 The algorithm is simple, offering promising directions to parallelize computations for Bayesian problems with black-box, expensive models and no access to gradient information.

· Follow-ups:

- Control of the approximation on π of AOPA
- Extend our results for other Markov chains with piecewise constant increments $x \mapsto f(x, w)$ such as **Laplace-Hamiltonian** and **Barker Metropolis**.

Recap:

Algorithm	complexity	К	method
Sequential algorithm	$\mathcal{O}(d)$	1	exact
Online Picard	$\mathcal{O}(\sqrt{d})$	$\mathcal{O}(\sqrt{d})$	exact
Approx. Online Picard	$\mathcal{O}(1)$	$\mathcal{O}(d)$	approximate

 The algorithm is simple, offering promising directions to parallelize computations for Bayesian problems with black-box, expensive models and no access to gradient information.

Follow-ups:

- Control of the approximation on π of AOPA
- Extend our results for other Markov chains with piecewise constant increments $x \mapsto f(x, w)$ such as **Laplace-Hamiltonian** and **Barker Metropolis**.
- Develop more advanced algorithms combining "cheap" predictions with Picard maps (e.g. Parareal framework)

- Andrieu, Christophe et al. (2024). "Explicit convergence bounds for Metropolis Markov chains: isoperimetry, spectral gaps and profiles". In: *The Annals of Applied Probability* 34.4, pp. 4022–4071.
- Grazzi, Sebastiano and Giacomo Zanella (2025). *Parallel computations for Metropolis Markov chains with Picard maps*. arXiv: 2506.09762 [stat.C0]. URL: https://arxiv.org/abs/2506.09762.
- Pozza, Francesco and Giacomo Zanella (2024). "On the fundamental limitations of multiproposal Markov chain Monte Carlo algorithms". In: arXiv preprint arXiv:2410.23174.

Contraction of the Picard map

Under Assumptions 3, for every $x, y \in \mathcal{X}$,

$$\mathbb{P}(f(\mathbf{x}, \mathbf{W}) \neq f(\mathbf{y}, \mathbf{W})) \leq \frac{hL^{1/2}}{d^{1/2}} \left(\sqrt{\frac{2}{\pi}} + \frac{h\gamma}{2} \right) \|\mathbf{x} - \mathbf{y}\|, \quad \mathbf{W} \sim \nu.$$

Lemma 2

Under Assumption 2 and for all $x, y \in \mathcal{X}^{K+1}$ with $x_0 = y_0, w_0 \in \mathcal{W}$ and $1 < i \le d$,

$$\mathbb{E}[\|\Phi_i(\mathbf{x}, \mathbf{W}) - \Phi_i(\mathbf{y}, \mathbf{W})\|^2] \leq \frac{15h^2}{L} \sum_{\ell=1}^{i-1} \left(\mathbb{P}(f(\mathbf{x}_{\ell}, \mathbf{W}_{\ell}) \neq f(\mathbf{y}_{\ell}, \mathbf{W}_{\ell})) + \delta(d) \right).$$

Under Assumptions 3, for every $x, y \in \mathcal{X}$,

$$\mathbb{P}(f(x,W) \neq f(y,W)) \leq \frac{hL^{1/2}}{d^{1/2}} \left(\sqrt{\frac{2}{\pi}} + \frac{h\gamma}{2} \right) \|x - y\|, \qquad W \sim \nu.$$

Lemma 2

Under Assumption 2 and for all $x, y \in \mathcal{X}^{K+1}$ with $x_0 = y_0, w_0 \in \mathcal{W}$ and $1 < i \le d$,

$$\mathbb{E}[\|\Phi_i(x, \mathbf{W}) - \Phi_i(y, \mathbf{W})\|^2] \le \frac{15h^2}{L} \sum_{\ell=1}^{i-1} \left(\mathbb{P}(f(x_\ell, \mathbf{W}_\ell) \neq f(y_\ell, \mathbf{W}_\ell)) + \delta(d) \right).$$

Lemma 3

Let $A^{(j)} = \max_{\ell \le j} \mathbb{P}(f(X_{\ell}^{(j)}, W_{\ell}) \ne f(X_{\ell}, W_{\ell})), j \in \{0, 1, \dots\}$. Under Assumption 2, we have

$$A^{(j+1)} \le \sqrt{c_0 \frac{i}{d} \left(A^{(j)} + \delta(d) \right)}. \tag{3}$$

Under Assumptions 3, for every $x, y \in \mathcal{X}$,

$$\mathbb{P}(f(x,W) \neq f(y,W)) \leq \frac{hL^{1/2}}{d^{1/2}} \left(\sqrt{\frac{2}{\pi}} + \frac{h\gamma}{2} \right) \|x - y\|, \quad W \sim \nu.$$

Lemma 2

Under Assumption 2 and for all $x, y \in \mathcal{X}^{K+1}$ with $x_0 = y_0, w_0 \in \mathcal{W}$ and $1 < i \le d$,

$$\mathbb{E}[\|\Phi_i(x, W) - \Phi_i(y, W)\|^2] \leq \frac{15h^2}{L} \sum_{\ell=1}^{i-1} (\mathbb{P}(f(x_{\ell}, W_{\ell}) \neq f(y_{\ell}, W_{\ell})) + \delta(d)).$$

Lemma 3

Let $A^{(j)} = \max_{\ell \leq j} \mathbb{P}(f(X_\ell^{(j)}, W_\ell) \neq f(X_\ell, W_\ell)), j \in \{0, 1, \dots\}$. Under Assumption 2, we have

$$A^{(j+1)} \le \sqrt{c_0 \frac{i}{d} \left(A^{(j)} + \delta(d) \right)}. \tag{3}$$

Lemma 4

Let $(a_j)_{j=0,1,\dots}$ be a non-negative sequence satisfying $a_0=1$ and $a_{j+1}\leq b\sqrt{a_j+\epsilon}$ for some fixed $b,\epsilon>0$ and all $j\geq 0$. Then $a_j\leq b^2+\epsilon+2^{-j}$ for all $j\geq 0$.

Under Assumptions 3, for every $x, y \in \mathcal{X}$,

$$\mathbb{P}(f(x,W) \neq f(y,W)) \leq \frac{hL^{1/2}}{d^{1/2}} \left(\sqrt{\frac{2}{\pi}} + \frac{h\gamma}{2} \right) \|x - y\|, \quad W \sim \nu.$$

Lemma 2

Under Assumption 2 and for all $x, y \in \mathcal{X}^{k+1}$ with $x_0 = y_0, w_0 \in \mathcal{W}$ and $1 < i \le d$,

$$\mathbb{E}[\|\Phi_i(\mathbf{x}, \mathbf{W}) - \Phi_i(\mathbf{y}, \mathbf{W})\|^2] \le \frac{15h^2}{L} \sum_{\ell=1}^{i-1} \left(\mathbb{P}(f(\mathbf{x}_{\ell}, \mathbf{W}_{\ell}) \neq f(\mathbf{y}_{\ell}, \mathbf{W}_{\ell})) + \delta(d) \right).$$

Lemma 3

Let $A^{(j)}=\max_{\ell\leq i}\mathbb{P}(f(X_\ell^{(j)},W_\ell)\neq f(X_\ell,W_\ell)), j\in\{0,1,\dots\}$. Under Assumption 2, we have

$$A^{(j+1)} \le \sqrt{c_0 \frac{i}{d} \left(A^{(j)} + \delta(d) \right)}. \tag{3}$$

Lemma 4

Let $(a_j)_{j=0,1,\dots}$ be a non-negative sequence satisfying $a_0=1$ and $a_{j+1}\leq b\sqrt{a_j+\epsilon}$ for some fixed $b,\epsilon>0$ and all $j\geq 0$. Then $a_j\leq b^2+\epsilon+2^{-j}$ for all $j\geq 0$.

Lemma 3 and 4 implies Theorem 1, i.e.

$$\mathbb{P}(f(X_i^{(j)}, W_i) \neq f(X_i, W_i) \mid X_0 = x_0, W_0 = w_0) \leq c_0 \frac{i}{d} + \delta(d) + 2^{-j}$$