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Zeroth-order Parallel Sampling

* Objective: Sample from a distribution 7(dx) = Cexp(—V(x))dxon X = R,
for some unknown constant C.
- Motivation: Bayesian Inference, statistical physics,...

+ Setting:
- Zeroth-order methods: point-wise evaluation of V (and not YV, which is typical for

first-order methods)
- Parallel computing: K > 1 processors that can work in parallel to execute the task

Performance

(Parallel round) complexity: number of point-wise evaluations of V per parallel
processor in order to obtain samples close to 7 (e.g. in total variation).

+ Important quantities: dimension d, number of processors K.
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Diagram Parallel sampling

Figure 1: One parallel iteration of the algorithm
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+ Approach: Markov chain Monte Carlo i.e. simulate a Markov chain
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whose limiting distribution coincides with 7, for some i.i.d random variables
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Markov chain Monte Carlo
+ Approach: Markov chain Monte Carlo i.e. simulate a Markov chain
X1 =X + (X, W), i=0,1,... M

whose limiting distribution coincides with 7, for some i.i.d random variables
Wo, Wi, ...

+ Random Walk Metropolis (RWM): W = (Z,U), U ~ U([0,1]), Z ~ N(0,&2),
flx, W) = ZB(x,U,Z) with B(x,u,z) =1 (w(x +z)/m(x) > u).
+ State of the art for log-concave distributions and sequential algorithms
(K = 1) with complexity O(d)" (Andrieu et al. 2024).

How do we parallelize the recursion in (1), given its
sequential nature?

' the notation O ignores constants and log terms




Zeroth order parallel sampling

+ Previous attempts:

- Pre-fetching: computes V in each future potential state of the Markov chain forj > 1
steps ahead.

+ Caveat: number of potential states grows exponentially with j.
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Zeroth order parallel sampling

+ Previous attempts:

- Pre-fetching: computes V in each future potential state of the Markov chain forj > 1
steps ahead.

+ Caveat: number of potential states grows exponentially with j.

- Multiple-try: at each interation, simulates K proposal states and computes V in each
state.

+ Caveat: Gap(Multiple-try) < Gap(RWM) log(K) (Pozza and Zanella 2024).
— Complexity O(d/log(K)) — K has to grow exponentially with d
+ Best scenarios: no waste of computational power: from O(d) to O(d/K).

* Preview of our results:

Algorithm complexity | K method
Sequential algorithm | O(d) 1 exact

Online Picard O(\/d) O(V/d) | exact
Approx. Online Picard | O(1) O(d) approximate
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Picard map for Markov chain
simulation
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Picard Map
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Picard Map

i—1

X =Xo+ Y f(Xe,We), i=1,2,.... )
=0

+ Xis also defined by

Picard map ¢

O XKL WK s XK+ takes as input a trajectory X and outputs a new
trajectory X' = (X{,...,Xz) = ®(X, W) defined as

X i~ 0
X = ®;(X,W) = 0 - j ‘
Xo+ D —ofXe,We) 0<i<K.

* The K calls to the function f can be executed in parallel.
+ Given W € W¥,

- x = D(x, W) is deterministic.

- the fixed point X satisfying X = ® (X, W) is the solution to (2).

- Compute X as the limit of the recursion X¥) = ®(xU=1 W) forj = 1,2,...
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Diagram Picard recursion

P1 e f(X(),LV())

P — f(X:1,W1)

Input: . . Output:
Xo.x X(/):K

Wo:k -1 = ®(Xo.x, Wo:x—1)

Px - f(Xx-1,Wgk_1)

Main

Figure 2: One parallel iteration of Picard recursion




Illustration Picard map

Picard recursion: X(D)
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Figure 3: Xfi),X§'>, ... of the Picard recursion for K = 1000 steps applied to a d = 100
dimensional RWM Markov chain. Gray line: Fixed point X1, . .., Xk. The dashed line
corresponds to the part of the trajectory that has converged to its fixed point.
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+ We simulated K = 1000 steps of RWM inj = 13 < K (parallel) iterations,
trading the use of parallel computing for a shorter run-time.

+ The Picard map was previously considered for ODE/PDE:

Model N/d x = f(x) orx — f(x,w) | Method
ODE/PDE large smooth approx.
SDE (ULA, diff. models) | constant | smooth approx.
RWM constant | piecewise constant exact

+ Blessing of dimensionality for RWM: the convergence of Picard for RWM
improves in high dimensions as all increments become approximately
orthogonal with each other.

« Piecewise constant x — f(x, w):

- The contraction of the Picard map for RWM is non-standard.
- X — ®(X, W) for RWM is constant in a neighborhood of its fixed point.
- The fixed point of ® can be reached exactly.
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Online Picard Algorithm (OPA)
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Online Picard Algorithm (OPA)

+ Goal: generalize Picard for N steps of the Markov chain with K < N processors.

Figure 4: The color of the (j, /) entry represents the state of the ith step: B for

f(X,m, W) = f(X,(ﬁD, W;) (correct guess), B forf()(,w7 w;) # f(X,.Ofl), W;) (error). B
where no processor has been allocated. : number of steps simulated according to
RWM.

+ Key challenges for analyzing the convergence:

- For each (j, i) square: probability of B (error) vs B (correct guess).
- For each row j: probability of a strike of n > 1 consecutive B (or equivalently the
probability of the first H).
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Probability of an error (m)

+ Technical assumption: V is L-smooth and Hessian-Lipschitz.
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Probability of an error (m)

+ Technical assumption: V is L-smooth and Hessian-Lipschitz.

(Simplified) Theorem 1
After j > log(d) steps we have
PO, W) # 106, W) = O(5), i< K.

+ After j > log(d) iterations, the probability of B at square (j, i) is O(i/d)
+ The probability goes to 0 for d — oo.
* The probability is controlled only for K < O(d).
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Complexity OPA

* Tk,n: number of iterations of OPA for simulating N steps with K processors
(Simplified) Theorem 2
Forall N € N, K = O(V/d), we have that Ty,y = O(¥) with high probability.

+ By the union bound, the first B happens at step i with probability O(i? /d). —
K = D] O(V4).
Corollary 1 (Complexity OPA)

For log-concave distributions, the Online Picard algorithm with K = O(+/d)
outputs a random variable X, with [|£(X) — 7|ty < € after

=© <L\/apolylog(el)> parallel iterations.
m

+ Corollary 1 was obtained by combining Theorem 2 with known mixing time
bounds of RWM (Andrieu et al. 2024)

16 /22



Approximate OPA (1)

+ Bottleneck OPA: even though the probability of B at step i is O(i/d) (Theorem
1), the first B happens much earlier at step i = O(1/d).
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+ Bottleneck OPA: even though the probability of B at step i is O(i/d) (Theorem
1), the first B happens much earlier at step i = O(1/d).

« However, the probability of having at most r-fraction of B, r € (0,1) is O(d).
+ In the Approximate OPA we tolerates a fixed (and small) percentage r € [0, 1]

of errors:

1 2K N

K ]

Figure 5: Illustration of OPA (left) vs AOPA with r = 50% (right). The color of the (j, /) entry
represents the state of the ith step: l for}‘(X,m7 W) = f(X,(/_U, W;) (correct guess), B for
f(X,-<’>, W;) # ]‘()(,071)7 W;) (error). B where no processor has been allocated.
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+ For at least (1 — r)-fraction of increments we havef()(,-(j), W) = X,-(_Ql — X,-(j).
+ The error is bounded by the size of Gaussian noise for the remaining steps.

. Té’L number of iterations of AOPA with tolerance r € (0, 1) for simulating N
steps with K processors

(Simplified) Theorem 3
ForallN € N, K = O(d), we have that T,i’L = O(%) with high probability.
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+ For at least (1 — r)-fraction of increments we havef(X,-(j), W) = X,-(_Ql — X,-(j).
+ The error is bounded by the size of Gaussian noise for the remaining steps.

. é’L number of iterations of AOPA with tolerance r € (0, 1) for simulating N

steps with K processors

(Simplified) Theorem 3
ForallN € N, K = O(d), we have that T,Er,)\, = O(%) with high probability.

these results suggest a complexity O(1) with K = O(d) for AOPA.

* More results can be found in the paper:
- As Xo — 00, the probability of Ml — 0 (— Instantaneous convergence in the tails).
- All convergence results also apply to Metropolis within Gibbs.
- For Metropolis within Gibbs, we have instantaneous convergence for isotropic
Gaussian targets, suggesting better performance for well-conditioned targets.
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Figure 6: Performance of OPA (X) and its AOPA (X, r = 0%, . .., 20%) applied to RWM and MwG
(Xiwe)- Average speedup G = N/Tyn, K = d,d = 102, ..., 103 (Left panel) and d = 200,

K =2,3,...,103. Right panel: Average error on 1¢; (M) and 2,4 (&) moment estimation for the
AOPA withr = 0%, ...,20%
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* Recap:
Algorithm complexity | K method
Sequential algorithm | O(d) 1 exact
Online Picard O(\/gl) O(\/a) exact
Approx. Online Picard | O(1) O(d) approximate

+ The algorithm is simple, offering promising directions to parallelize
computations for Bayesian problems with black-box, expensive models and
no access to gradient information.

* Follow-ups:
- Control of the approximation on 7 of AOPA
- Extend our results for other Markov chains with piecewise constant increments
x > f(x,w) such as Laplace-Hamiltonian and Barker Metropolis.
- Develop more advanced algorithms combining “cheap” predictions with Picard
maps (e.g. Parareal framework)
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Lemma 1

Under Assumptions 3, for every x,y € X,
hLt/? 2 hy
P(f(x, W) # f(y,w)) < 4172 ;+? [x = yll, W~ .

Under Assumption 2 and for all x,y € XXt withxo = yo,wo € Wand1 < i < d,

Lemma 2

i—1

E[||®i(x, W) — @i(y, w)|1?] Z(P(fm We) # f(ve, We)) + 8(d)) .
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Let (G/)jzo,l,,., be a non-negative sequence satisfying ap = 1 and a;+1 < by/a; + € for some fixed
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Lemma 3 and 4 implies Theorem 1, i.e.

PG (W) # F6 W) | Xo = x0, Wo = wo) < co, + 3(d) +27
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