Parallel computations for
Metropolis Markov chains with
Picard maps

Sebastiano Grazzi
with Giacomo Zanella
Department of Decision Science, Bocconi University, Milan

July 26, 2025




Outline

* Overview

+ Picard Map @ for Markov chain simulation
* Main theoretical results

+ Simulations

+ (Technical Appendix, only if time allows) Contraction of ®

S. Grazzi, G. Zanella, Parallel computations for Metropolis Markov chains with
Picard maps. arXiv:2506.09762

2/22



Overview

3 /22



Zeroth-order Parallel Sampling

* Objective: Sample from a distribution 7(dx) = Cexp(—V(x))dxon X = R,
for some unknown constant C.

- Motivation: Bayesian Inference, statistical physics,...

4/22



Zeroth-order Parallel Sampling

* Objective: Sample from a distribution 7(dx) = Cexp(—V(x))dxon X = R,
for some unknown constant C.
- Motivation: Bayesian Inference, statistical physics,...

+ Setting:
- Zeroth-order methods: point-wise evaluation of V (and not YV, which is typical for

first-order methods)
- Parallel computing: K > 1 processors that can work in parallel to execute the task

4/22



Zeroth-order Parallel Sampling

* Objective: Sample from a distribution 7(dx) = Cexp(—V(x))dxon X = R,
for some unknown constant C.
- Motivation: Bayesian Inference, statistical physics,...

+ Setting:
- Zeroth-order methods: point-wise evaluation of V (and not YV, which is typical for

first-order methods)
- Parallel computing: K > 1 processors that can work in parallel to execute the task

Performance

(Parallel round) complexity: number of point-wise evaluations of V per parallel
processor in order to obtain samples close to 7 (e.g. in total variation).

+ Important quantities: dimension d, number of processors K.

4/22



Diagram Parallel sampling

Figure 1: One parallel iteration of the algorithm

5/22



Markov chain Monte Carlo
+ Approach: Markov chain Monte Carlo i.e. simulate a Markov chain
X1 =X + (X, W), i=0,1,... M

whose limiting distribution coincides with 7, for some i.i.d random variables
Wo, Wi, ...

' the notation O ignores constants and log terms




Markov chain Monte Carlo
+ Approach: Markov chain Monte Carlo i.e. simulate a Markov chain
X1 =X + (X, W), i=0,1,... M

whose limiting distribution coincides with 7, for some i.i.d random variables
Wo, Wi, ...

+ Random Walk Metropolis (RWM): W = (Z,U), U ~ U([0,1]), Z ~ N(0,&2),

flx, W) = ZB(x,U,Z) with B(x,u,z) =1 (w(x +z)/m(x) > u).

' the notation O ignores constants and log terms




Markov chain Monte Carlo
+ Approach: Markov chain Monte Carlo i.e. simulate a Markov chain
X1 =X + (X, W), i=0,1,... M

whose limiting distribution coincides with 7, for some i.i.d random variables
Wo, Wi, ...

+ Random Walk Metropolis (RWM): W = (Z,U), U ~ U([0,1]), Z ~ N(0,&2),

flx, W) = ZB(x,U,Z) with B(x,u,z) =1 (w(x +z)/m(x) > u).

+ State of the art for log-concave distributions and sequential algorithms
(K = 1) with complexity O(d)" (Andrieu et al. 2024).

' the notation O ignores constants and log terms




Markov chain Monte Carlo
+ Approach: Markov chain Monte Carlo i.e. simulate a Markov chain
X1 =X + (X, W), i=0,1,... M

whose limiting distribution coincides with 7, for some i.i.d random variables
Wo, Wi, ...

+ Random Walk Metropolis (RWM): W = (Z,U), U ~ U([0,1]), Z ~ N(0,&2),
flx, W) = ZB(x,U,Z) with B(x,u,z) =1 (w(x +z)/m(x) > u).
+ State of the art for log-concave distributions and sequential algorithms
(K = 1) with complexity O(d)" (Andrieu et al. 2024).

How do we parallelize the recursion in (1), given its
sequential nature?

' the notation O ignores constants and log terms




Zeroth order parallel sampling

+ Previous attempts:

- Pre-fetching: computes V in each future potential state of the Markov chain forj > 1
steps ahead.

+ Caveat: number of potential states grows exponentially with j.

7 /22



Zeroth order parallel sampling

+ Previous attempts:

- Pre-fetching: computes V in each future potential state of the Markov chain forj > 1
steps ahead.

+ Caveat: number of potential states grows exponentially with j.

- Multiple-try: at each interation, simulates K proposal states and computes V in each
state.

+ Caveat: Gap(Multiple-try) < Gap(RWM) log(K) (Pozza and Zanella 2024).

7 /22



Zeroth order parallel sampling

+ Previous attempts:
- Pre-fetching: computes V in each future potential state of the Markov chain forj > 1
steps ahead.
+ Caveat: number of potential states grows exponentially with j.
- Multiple-try: at each interation, simulates K proposal states and computes V in each
state.
+ Caveat: Gap(Multiple-try) < Gap(RWM) log(K) (Pozza and Zanella 2024).

— Complexity O(d/log(K)) — K has to grow exponentially with d

7 /22



Zeroth order parallel sampling

+ Previous attempts:

- Pre-fetching: computes V in each future potential state of the Markov chain forj > 1
steps ahead.

+ Caveat: number of potential states grows exponentially with j.

- Multiple-try: at each interation, simulates K proposal states and computes V in each
state.

+ Caveat: Gap(Multiple-try) < Gap(RWM) log(K) (Pozza and Zanella 2024).
— Complexity O(d/log(K)) — K has to grow exponentially with d
+ Best scenarios: no waste of computational power: from O(d) to O(d/K).

7 /22



Zeroth order parallel sampling

+ Previous attempts:

- Pre-fetching: computes V in each future potential state of the Markov chain forj > 1
steps ahead.

+ Caveat: number of potential states grows exponentially with j.

- Multiple-try: at each interation, simulates K proposal states and computes V in each
state.

+ Caveat: Gap(Multiple-try) < Gap(RWM) log(K) (Pozza and Zanella 2024).
— Complexity O(d/log(K)) — K has to grow exponentially with d
+ Best scenarios: no waste of computational power: from O(d) to O(d/K).

* Preview of our results:

Algorithm complexity | K method
Sequential algorithm | O(d) 1 exact

Online Picard O(\/d) O(V/d) | exact
Approx. Online Picard | O(1) O(d) approximate

7 /22



Picard map for Markov chain
simulation

8 /22



Picard Map

+ Xis also defined by
i—1

X =Xo+ Y f(Xe,We), i=1,2,.... )
£=0

9 /22



Picard Map

i—1

X =Xo+ Y f(Xe,We), i=1,2,.... )
£=0

+ Xis also defined by

Picard map ¢
O XKL WK s XK+ takes as input a trajectory X and outputs a new
trajectory X' = (X{,...,Xz) = ®(X, W) defined as
Xo i=0
i—1 .
Xo+ Y p_ofXe,We) 0<i<K.

X' = ®;(x,w) = {

9 /22



Picard Map

i—1

X =Xo+ Y f(Xe,We), i=1,2,.... )
£=0

+ Xis also defined by

Picard map ¢

O XKL WK s XK+ takes as input a trajectory X and outputs a new
trajectory X' = (X{,...,Xz) = ®(X, W) defined as

X i~ 0
X = ®;(X,W) = 0 - j ‘
Xo+ D —ofXe,We) 0<i<K.

* The K calls to the function f can be executed in parallel.

9 /22



Picard Map

i—1

X =Xo+ Y f(Xe,We), i=1,2,.... )
£=0

+ Xis also defined by

Picard map ¢
O XKL WK s XK+ takes as input a trajectory X and outputs a new
trajectory X' = (X{,...,Xz) = ®(X, W) defined as

X =0
X =®;(x,w)={"° . =0
Xo+ D —ofXe,We) 0<i<K.

* The K calls to the function f can be executed in parallel.

+ Given W € WX,
- x = D(x, W) is deterministic.
- the fixed point X satisfying X = ® (X, W) is the solution to (2).

9 /22



Picard Map

i—1

X =Xo+ Y f(Xe,We), i=1,2,.... )
=0

+ Xis also defined by

Picard map ¢

O XKL WK s XK+ takes as input a trajectory X and outputs a new
trajectory X' = (X{,...,Xz) = ®(X, W) defined as

X i~ 0
X = ®;(X,W) = 0 - j ‘
Xo+ D —ofXe,We) 0<i<K.

* The K calls to the function f can be executed in parallel.
+ Given W € W¥,

- x = D(x, W) is deterministic.

- the fixed point X satisfying X = ® (X, W) is the solution to (2).

- Compute X as the limit of the recursion X¥) = ®(xU=1 W) forj = 1,2,...

9 /22



Diagram Picard recursion

P1 e f(X(),LV())

P — f(X:1,W1)

Input: . . Output:
Xo.x X(/):K

Wo:k -1 = ®(Xo.x, Wo:x—1)

Px - f(Xx-1,Wgk_1)

Main

Figure 2: One parallel iteration of Picard recursion




Illustration Picard map

Picard recursion: X(D)

Ty

71‘2.5 71‘0.0 7"/.5 *5‘.0 *2‘ 5
xy 0o ——
Figure 3: Xfi),X§'>, ... of the Picard recursion for K = 1000 steps applied to a d = 100
dimensional RWM Markov chain. Gray line: Fixed point X1, . .., Xk. The dashed line
corresponds to the part of the trajectory that has converged to its fixed point.

11/22



Illustration Picard map

Picard recursion: X(l)

Ty
4

(v

71‘2.5 71‘0.0 77‘5 75‘.0 *2‘.5
xy 0o ——
Figure 3: Xfi),Xg), ... of the Picard recursion for K = 1000 steps applied to a d = 100
dimensional RWM Markov chain. Gray line: Fixed point X1, . .., Xk. The dashed line
corresponds to the part of the trajectory that has converged to its fixed point.

11/22



Illustration Picard map

Picard recursion: X(z)

s S WY

Ty
|

~ ye
20~ T T( 200

71‘2.5 71‘0.0 77‘.5 *5‘.0 *2‘5
xy 0o ——
Figure 3: Xfi),Xg), ... of the Picard recursion for K = 1000 steps applied to a d = 100
dimensional RWM Markov chain. Gray line: Fixed point X1, . .., Xk. The dashed line
corresponds to the part of the trajectory that has converged to its fixed point.

11/22



Illustration Picard map

Picard recursion: X(B)

Ty

71‘2.5 71‘0.0 7"/.5 *5‘.0 *2‘ 5
xy 0o ——
Figure 3: Xfi),Xg), ... of the Picard recursion for K = 1000 steps applied to a d = 100
dimensional RWM Markov chain. Gray line: Fixed point X1, . .., Xk. The dashed line
corresponds to the part of the trajectory that has converged to its fixed point.

11/22



Illustration Picard map

Picard recursion: XM)

Ty

71‘2.5 71‘0.0 7"/.5 *5‘.0 *2‘ 5
xy 0o ——
Figure 3: Xfi),Xg), ... of the Picard recursion for K = 1000 steps applied to a d = 100
dimensional RWM Markov chain. Gray line: Fixed point X1, . .., Xk. The dashed line
corresponds to the part of the trajectory that has converged to its fixed point.

11/22



Illustration Picard map

5)

Picard recursion: X(

700
, 600
A

Ty

71‘2.5 71‘0.0 7"/.5 *5‘.0 *2‘ 5
xy 0o ——
Figure 3: Xfi),Xg), ... of the Picard recursion for K = 1000 steps applied to a d = 100
dimensional RWM Markov chain. Gray line: Fixed point X1, . .., Xk. The dashed line
corresponds to the part of the trajectory that has converged to its fixed point.

11/22



Illustration Picard map

. . 6
Picard recursion: X( )

5 1000
900
800
0
700
<R - 600
N ~$ S “&f; ==
8 y/
. == (} 500
= /32 - 400
s e
/—%‘3 300
e N ~
-10 {E“—ﬁo) < 200
100
=125 -10.0 =75 -5.0 -2.5
z, [J—

Figure 3: Xfi),Xg), ... of the Picard recursion for K = 1000 steps applied to a d = 100
dimensional RWM Markov chain. Gray line: Fixed point X1, . .., Xk. The dashed line
corresponds to the part of the trajectory that has converged to its fixed point.

11/22



Illustration Picard map

Picard recursion: Xm

“": 600
e = § o

.
\/4 g

t= TR 400

lo -~ gt
< 300

S

M

2y = T < 200
-10
100
-12.5 -10.0 =75 -5.0 =25
z, [J—

Figure 3: Xfi),Xg), ... of the Picard recursion for K = 1000 steps applied to a d = 100
dimensional RWM Markov chain. Gray line: Fixed point X1, . .., Xk. The dashed line
corresponds to the part of the trajectory that has converged to its fixed point.

11/22



Illustration Picard map

Picard recursion: X(S)

700
2,
R

(== Z 400
lo -~ gt
£
300
&
= —~ )4 l
2y = T < 200
-10
100
-12.5 -10.0 =75 -5.0 =25

) [(Je—

Figure 3: Xfi),Xg), ... of the Picard recursion for K = 1000 steps applied to a d = 100
dimensional RWM Markov chain. Gray line: Fixed point X1, . .., Xk. The dashed line
corresponds to the part of the trajectory that has converged to its fixed point.

11/22



Illustration Picard map

Picard recursion: X(g)

(== Z 400
lo -~ gt
£
300
&
= —~ )4 l
2y = T < 200
-10
100
-12.5 -10.0 =75 -5.0 =25

) [(Je—

Figure 3: Xfi),Xg), ... of the Picard recursion for K = 1000 steps applied to a d = 100
dimensional RWM Markov chain. Gray line: Fixed point X1, . .., Xk. The dashed line
corresponds to the part of the trajectory that has converged to its fixed point.

11/22



Illustration Picard map

. . 10
Picard recursion: X( )

5 1000
900
800
0
700
2
< 600
&
> 500
-5 /\
L= = 400
lo -~ gt
< 300
S
= —~ )4 l
2y = T < 200
-10
100
-12.5 -10.0 =75 -5.0 =25

) [(Je—

Figure 3: Xfi),Xg), ... of the Picard recursion for K = 1000 steps applied to a d = 100
dimensional RWM Markov chain. Gray line: Fixed point X1, . .., Xk. The dashed line
corresponds to the part of the trajectory that has converged to its fixed point.

11/22



Illustration Picard map

. . 11
Picard recursion: X( )

5 1000
900
800
0
700
2
< 600
&
> 500
-5 /\
L= = 400
lo -~ gt
< 300
S
= —~ )4 l
2y = T < 200
-10
100
-12.5 -10.0 =75 -5.0 =25

) [(Je—

Figure 3: Xfi),Xg), ... of the Picard recursion for K = 1000 steps applied to a d = 100
dimensional RWM Markov chain. Gray line: Fixed point X1, . .., Xk. The dashed line
corresponds to the part of the trajectory that has converged to its fixed point.

11/22



Illustration Picard map

. . 12
Picard recursion: X( )

Q 600
£ }5:‘
A= 500
- = %\9 ’\
t=a Z 400
[ -~ g
A&( 300
=2
=~ >
23 = \*) { 200
-10
100
-125 -10.0 -75 -5.0 -25

Figure 3: Xfi),Xg), ... of the Picard recursion for K = 1000 steps applied to a d = 100
dimensional RWM Markov chain. Gray line: Fixed point X1, . .., Xk. The dashed line
corresponds to the part of the trajectory that has converged to its fixed point.

11/22



Illustration Picard map

. . 13
Picard recursion: X( )

5 1000
900
800
0
700
2
< 600
&
> 500
-5 /\
L= = 400
lo -~ gt
< 300
S
= —~ )4 l
2y = T < 200
-10
100
-12.5 -10.0 =75 -5.0 =25

) [(Je—

Figure 3: Xfi),Xg), ... of the Picard recursion for K = 1000 steps applied to a d = 100
dimensional RWM Markov chain. Gray line: Fixed point X1, . .., Xk. The dashed line
corresponds to the part of the trajectory that has converged to its fixed point.

11/22



Picard map ¢

+ We simulated K = 1000 steps of RWM inj = 13 < K (parallel) iterations,
trading the use of parallel computing for a shorter run-time.

12 /22



Picard map ¢

+ We simulated K = 1000 steps of RWM inj = 13 < K (parallel) iterations,
trading the use of parallel computing for a shorter run-time.

* The Picard map was previously considered for ODE/PDE:

Model N/d x = f(x) orx — f(x,w) | Method
ODE/PDE large smooth approx.
SDE (ULA, diff. models) | constant | smooth approx.
RWM constant | piecewise constant exact

12 /22



Picard map ¢

+ We simulated K = 1000 steps of RWM inj = 13 < K (parallel) iterations,
trading the use of parallel computing for a shorter run-time.

* The Picard map was previously considered for ODE/PDE:

Model N/d x = f(x) orx — f(x,w) | Method
ODE/PDE large smooth approx.
SDE (ULA, diff. models) | constant | smooth approx.
RWM constant | piecewise constant exact

+ Blessing of dimensionality for RWM: the convergence of Picard for RWM
improves in high dimensions as all increments become approximately
orthogonal with each other.

12 /22



Picard map ¢

+ We simulated K = 1000 steps of RWM inj = 13 < K (parallel) iterations,
trading the use of parallel computing for a shorter run-time.

+ The Picard map was previously considered for ODE/PDE:

Model N/d x = f(x) orx — f(x,w) | Method
ODE/PDE large smooth approx.
SDE (ULA, diff. models) | constant | smooth approx.
RWM constant | piecewise constant exact

+ Blessing of dimensionality for RWM: the convergence of Picard for RWM
improves in high dimensions as all increments become approximately
orthogonal with each other.

« Piecewise constant x — f(x, w):

- The contraction of the Picard map for RWM is non-standard.
- X — ®(X, W) for RWM is constant in a neighborhood of its fixed point.
- The fixed point of ® can be reached exactly.

12 /22



Online Picard Algorithm (OPA)

+ Goal: generalize Picard for N steps of the Markov chain with K < N processors.

13 /22



Online Picard Algorithm (OPA)

+ Goal: generalize Picard for N steps of the Markov chain with K < N processors.

Figure 4: The color of the (j, /) entry represents the state of the jth step: l for

f(X,O), W) = f(X,(j*D, W;) (correct guess), B forf()q0>, w;) ;éf(X,‘(kl), W;) (error). B
where no processor has been allocated. : number of steps simulated according to
RWM.

13 /22



Online Picard Algorithm (OPA)

+ Goal: generalize Picard for N steps of the Markov chain with K < N processors.

Figure 4: The color of the (j, /) entry represents the state of the ith step: B for

f(X,<j>, W) = f(X,(j*D, W;) (correct guess), B forf()(,w7 w;) # f(X,.Ofl), W;) (error). B
where no processor has been allocated. : number of steps simulated according to
RWM.

13 /22



Online Picard Algorithm (OPA)

+ Goal: generalize Picard for N steps of the Markov chain with K < N processors.

Figure 4: The color of the (j, /) entry represents the state of the ith step: B for

f(X,m, W) = f(X,(ﬁD, W;) (correct guess), B forf()(,w7 w;) # f(X,.Ofl), W;) (error). B
where no processor has been allocated. : number of steps simulated according to
RWM.

+ Key challenges for analyzing the convergence:

- For each (j, i) square: probability of B (error) vs B (correct guess).

13 /22



Online Picard Algorithm (OPA)

+ Goal: generalize Picard for N steps of the Markov chain with K < N processors.

Figure 4: The color of the (j, /) entry represents the state of the ith step: B for

f(X,m, W) = f(X,(ﬁD, W;) (correct guess), B forf()(,w7 w;) # f(X,.Ofl), W;) (error). B
where no processor has been allocated. : number of steps simulated according to
RWM.

+ Key challenges for analyzing the convergence:

- For each (j, i) square: probability of B (error) vs B (correct guess).
- For each row j: probability of a strike of n > 1 consecutive B (or equivalently the
probability of the first H).

13 /22



Theoretical results

14 /22



Probability of an error (m)

+ Technical assumption: V is L-smooth and Hessian-Lipschitz.

15 /22



Probability of an error (m)

+ Technical assumption: V is L-smooth and Hessian-Lipschitz.

(Simplified) Theorem 1
After j > log(d) steps we have
PO, W) # 106, W) = O(5), i< K.

+ After j > log(d) iterations, the probability of B at square (j, i) is O(i/d)

15 /22



Probability of an error (m)

+ Technical assumption: V is L-smooth and Hessian-Lipschitz.

(Simplified) Theorem 1
After j > log(d) steps we have
PO, W) # 106, W) = O(5), i< K.

+ After j > log(d) iterations, the probability of B at square (j, i) is O(i/d)
+ The probability goes to 0 for d — oo.

15 /22



Probability of an error (m)

+ Technical assumption: V is L-smooth and Hessian-Lipschitz.

(Simplified) Theorem 1
After j > log(d) steps we have
PO, W) # 106, W) = O(5), i< K.

+ After j > log(d) iterations, the probability of B at square (j, i) is O(i/d)
+ The probability goes to 0 for d — oo.
* The probability is controlled only for K < O(d).

15 /22



Complexity OPA

* Tk,n: number of iterations of OPA for simulating N steps with K processors

16 /22



Complexity OPA

* Tk,n: number of iterations of OPA for simulating N steps with K processors

(Simplified) Theorem 2
Forall N € N, K = O(V/d), we have that Ty,y = O(¥) with high probability.

16 /22



Complexity OPA

* Tk,n: number of iterations of OPA for simulating N steps with K processors

(Simplified) Theorem 2
Forall N € N, K = O(V/d), we have that Ty,y = O(¥) with high probability.

« By the union bound, the first B happens at step i with probability O(i? /d). —

K = D] O(V4).

16 /22



Complexity OPA

* Tk,n: number of iterations of OPA for simulating N steps with K processors
(Simplified) Theorem 2
Forall N € N, K = O(V/d), we have that Ty,y = O(¥) with high probability.

+ By the union bound, the first B happens at step i with probability O(i? /d). —
K = D] O(V4).
Corollary 1 (Complexity OPA)

For log-concave distributions, the Online Picard algorithm with K = O(+/d)
outputs a random variable X, with [|£(X) — 7|ty < € after

=© <L\/apolylog(el)> parallel iterations.
m

+ Corollary 1 was obtained by combining Theorem 2 with known mixing time
bounds of RWM (Andrieu et al. 2024)

16 /22



Approximate OPA (1)

+ Bottleneck OPA: even though the probability of B at step i is O(i/d) (Theorem
1), the first B happens much earlier at step i = O(1/d).

17 /22



Approximate OPA (1)

+ Bottleneck OPA: even though the probability of B at step i is O(i/d) (Theorem
1), the first B happens much earlier at step i = O(1/d).

+ However, the probability of having at most r-fraction of l, r € (0,1) is O(d).

17 /22



Approximate OPA (1)

+ Bottleneck OPA: even though the probability of B at step i is O(i/d) (Theorem
1), the first B happens much earlier at step i = O(1/d).

+ However, the probability of having at most r-fraction of l, r € (0,1) is O(d).

* In the Approximate OPA we tolerates a fixed (and small) percentage r € [0, 1]
of errors:

17 /22



Approximate OPA (1)

+ Bottleneck OPA: even though the probability of B at step i is O(i/d) (Theorem
1), the first B happens much earlier at step i = O(1/d).

« However, the probability of having at most r-fraction of B, r € (0,1) is O(d).
+ In the Approximate OPA we tolerates a fixed (and small) percentage r € [0, 1]

of errors:

1 2K N

K ]

Figure 5: Illustration of OPA (left) vs AOPA with r = 50% (right). The color of the (j, /) entry
represents the state of the ith step: l for}‘(X,m7 W) = f(X,(/_U, W;) (correct guess), B for
f(X,-<’>, W;) # ]‘()(,071)7 W;) (error). B where no processor has been allocated.

17 /22



Approximate OPA (2)

« Forr = 0, we recover OPA.

18 /22



Approximate OPA (2)

« Forr = 0, we recover OPA.
X(j)

i

+ For at least (1 — r)-fraction of increments we havef(X,-(j)., W) = X,-(_Ql -

18 /22



Approximate OPA (2)

+ Forr = 0, we recover OPA.
+ For at least (1 — r)-fraction of increments we havef(X,-(j)., W) = X,-(_Ql — X,-(j).

+ The error is bounded by the size of Gaussian noise for the remaining steps.

18 /22



Approximate OPA (2)

+ Forr = 0, we recover OPA.
+ For at least (1 — r)-fraction of increments we havef(X,-(j)., W) = X,-(_Ql — X,-(j).
+ The error is bounded by the size of Gaussian noise for the remaining steps.

. Té’L number of iterations of AOPA with tolerance r € (0, 1) for simulating N
steps with K processors

18 /22



Approximate OPA (2)

+ Forr = 0, we recover OPA.
+ For at least (1 — r)-fraction of increments we havef(X,-(j)., W) = X,-(_Ql — X,-(j).
+ The error is bounded by the size of Gaussian noise for the remaining steps.

. Té’L number of iterations of AOPA with tolerance r € (0, 1) for simulating N
steps with K processors

(Simplified) Theorem 3
ForallN € N, K = O(d), we have that T,i’L = O(%) with high probability.

18 /22



Approximate OPA (2)

+ Forr = 0, we recover OPA.
+ For at least (1 — r)-fraction of increments we havef()(,-(j), W) = X,-(_Ql — X,-(j).
+ The error is bounded by the size of Gaussian noise for the remaining steps.

. Té’L number of iterations of AOPA with tolerance r € (0, 1) for simulating N
steps with K processors

(Simplified) Theorem 3
ForallN € N, K = O(d), we have that T,i’L = O(%) with high probability.

these results suggest a complexity O(1) with K = O(d) for AOPA.

18 /22



Approximate OPA (2)

+ Forr = 0, we recover OPA.

+ For at least (1 — r)-fraction of increments we havef()(,-(j), W) = X,-(_Ql — X,-(j).

+ The error is bounded by the size of Gaussian noise for the remaining steps.

. é’L number of iterations of AOPA with tolerance r € (0, 1) for simulating N
steps with K processors

(Simplified) Theorem 3

ForallN € N, K = O(d), we have that T,i’L = O(%) with high probability.
these results suggest a complexity O(1) with K = O(d) for AOPA.

* More results can be found in the paper:
- As Xo — 00, the probability of Ml — 0 (— Instantaneous convergence in the tails).

18 /22



Approximate OPA (2)

+ Forr = 0, we recover OPA.

+ For at least (1 — r)-fraction of increments we havef(X,-(j), W) = X,-(_Ql — X,-(j).

+ The error is bounded by the size of Gaussian noise for the remaining steps.

. é’L number of iterations of AOPA with tolerance r € (0, 1) for simulating N
steps with K processors

(Simplified) Theorem 3

ForallN € N, K = O(d), we have that T,Er,)\, = O(%) with high probability.
these results suggest a complexity O(1) with K = O(d) for AOPA.

* More results can be found in the paper:
- As Xo — 00, the probability of Ml — 0 (— Instantaneous convergence in the tails).
- All convergence results also apply to Metropolis within Gibbs.

18 /22



Approximate OPA (2)

+ Forr = 0, we recover OPA.
+ For at least (1 — r)-fraction of increments we havef(X,-(j), W) = X,-(_Ql — X,-(j).
+ The error is bounded by the size of Gaussian noise for the remaining steps.

. é’L number of iterations of AOPA with tolerance r € (0, 1) for simulating N

steps with K processors

(Simplified) Theorem 3
ForallN € N, K = O(d), we have that T,Er,)\, = O(%) with high probability.

these results suggest a complexity O(1) with K = O(d) for AOPA.

* More results can be found in the paper:
- As Xo — 00, the probability of Ml — 0 (— Instantaneous convergence in the tails).
- All convergence results also apply to Metropolis within Gibbs.
- For Metropolis within Gibbs, we have instantaneous convergence for isotropic
Gaussian targets, suggesting better performance for well-conditioned targets.

18 /22



Simulations

19 /22



Logistic Regression

015 o
o ° ] A
e e ////
_— e /e
o /
° —
010 | / °
o
oo
005 |
o~ 21, RWM
oM. MWG
-e- &, RWM
o0&, MWG
000 Lt . . : .

0.00 0.05 0.10 0.15 0.20
T

Figure 6: Performance of OPA (X) and its AOPA (X, r = 0%, . .., 20%) applied to RWM and MwG
(Xiwe)- Average speedup G = N/Tyn, K = d,d = 102, ..., 103 (Left panel) and d = 200,

K =2,3,...,103. Right panel: Average error on 1¢; (M) and 2,4 (&) moment estimation for the
AOPA withr = 0%, ...,20%




Conclusion

* Recap:
Algorithm complexity | K method
Sequential algorithm | O(d) 1 exact
Online Picard O(\/gl) O(\/a) exact
Approx. Online Picard | O(1) O(d) approximate

21 /22



Conclusion

* Recap:
Algorithm complexity | K method
Sequential algorithm | O(d) 1 exact
Online Picard O(\/gl) O(\/a) exact
Approx. Online Picard | O(1) O(d) approximate

* The algorithm is simple, offering promising directions to parallelize
computations for Bayesian problems with black-box, expensive models and
no access to gradient information.

21 /22



Conclusion

* Recap:
Algorithm complexity | K method
Sequential algorithm | O(d) 1 exact
Online Picard O(\/gl) O(\/a) exact
Approx. Online Picard | O(1) O(d) approximate

* The algorithm is simple, offering promising directions to parallelize
computations for Bayesian problems with black-box, expensive models and
no access to gradient information.

* Follow-ups:
- Control of the approximation on 7 of AOPA

21 /22



Conclusion

* Recap:
Algorithm complexity | K method
Sequential algorithm | O(d) 1 exact
Online Picard O(\/gl) O(\/a) exact
Approx. Online Picard | O(1) O(d) approximate

* The algorithm is simple, offering promising directions to parallelize
computations for Bayesian problems with black-box, expensive models and
no access to gradient information.

* Follow-ups:
- Control of the approximation on 7 of AOPA
- Extend our results for other Markov chains with piecewise constant increments
x — f(x,w) such as Laplace-Hamiltonian and Barker Metropolis.

21 /22



Conclusion

* Recap:
Algorithm complexity | K method
Sequential algorithm | O(d) 1 exact
Online Picard O(\/gl) O(\/a) exact
Approx. Online Picard | O(1) O(d) approximate

+ The algorithm is simple, offering promising directions to parallelize
computations for Bayesian problems with black-box, expensive models and
no access to gradient information.

* Follow-ups:
- Control of the approximation on 7 of AOPA
- Extend our results for other Markov chains with piecewise constant increments
x > f(x,w) such as Laplace-Hamiltonian and Barker Metropolis.
- Develop more advanced algorithms combining “cheap” predictions with Picard
maps (e.g. Parareal framework)




@ Andrieu, Christophe et al. (2024). “Explicit convergence bounds for
Metropolis Markov chains: isoperimetry, spectral gaps and profiles”. In: The
Annals of Applied Probability 34.4, pp. 4022-4071.

@ Grazzi, Sebastiano and Giacomo Zanella (2025). Parallel computations for
Metropolis Markov chains with Picard maps. arXiv: 2506 .09762 [stat.C0].
URL: https://arxiv.org/abs/2506.09762.

@ Pozza, Francesco and Giacomo Zanella (2024). “On the fundamental
limitations of multiproposal Markov chain Monte Carlo algorithms”. In: arXiv
preprint arXiv:2410.23174.

22 /22


https://arxiv.org/abs/2506.09762
https://arxiv.org/abs/2506.09762

Contraction of the Picard map

23 /22



Lemma 1

Under Assumptions 3, for every x,y € X,
hLt/? 2 hy
P(f(x, W) # f(y,w)) < 4172 ;+? [x = yll, W~ .

Under Assumption 2 and for all x,y € XXt withxo = yo,wo € Wand1 < i < d,

Lemma 2

i—1

E[||®i(x, W) — @i(y, w)|1?] Z(P(fm We) # f(ve, We)) + 8(d)) .

24 /22



Lemma 1

Under Assumptions 3, for every x,y € X,
hLt/? 2 hy
P(f(x, W) # f(y,w)) < 4172 ;+? [x = yll, W~ .

Under Assumption 2 and for all x,y € XXt withxo = yo,wo € Wand1 < i < d,

Lemma 2

i—1

E[||®i(x, W) — @i(y, w)|1?] Z(P(fm We) # f(ve, We)) + 8(d)) .

Lemma 3

LetAl) = maxéng(f(Xz(j), We) # f(Xe,We)),j € {0,1,...}. Under Assumption 2, we have

D <y Jeo 2 (40 +3()). 3

24 /22



Lemma 1

Under Assumptions 3, for every x,y € X,
h11/2 2 m
P(f(x, W) # f(y,W)) < —+ 5 k=, wew
dt/2 T

Under Assumption 2 and for all x,y € XXt withxo = yo,wo € Wand1 < i < d,

Lemma 2

i—1

E[||®i(x, W) — @i(y, w)|1?] Z(P(fm We) # f(ve, We)) + 8(d)) .

Lemma 3

LetAl) = maxéng(f(Xz(j), W) # f(Xe, We)),j € {0,1,...} . Under Assumption 2, we have
AGHD < Coé (A0 + 6(d)). @)

Lemma 4

Let (G/)jzo,l,,., be a non-negative sequence satisfying ap = 1 and a;+1 < by/a; + € for some fixed
b,e > 0andallj > 0. Theng; < b2 + e+ 27 forallj > 0.




Lemma 1

Under Assumptions 3, for every x,y € X,
hLt/? 2 hy
P(f(x,w) # f(y,w)) < 412 ;+? IIx =yl W~ v,

Under Assumption 2 and for all x,y € XXt withxo = yo,wo € Wand1 < i < d,

Lemma 2

i—1

E[||®i(x, W) — @i(y, w)|1?] Z(P(fm We) # f(ve, We)) + 8(d)) .

Lemma 3

LetAl) = maxéng(f(Xz(j), W) # f(Xe, We)),j € {0,1,...} . Under Assumption 2, we have
AGHD < Coé (A0 + 6(d)). @)

Lemma 4

Let (G/)jzo,l,,., be a non-negative sequence satisfying ap = 1 and a;+1 < by/a; + € for some fixed
b,e > 0andallj > 0. Theng; < b2 + e+ 27 forallj > 0.

Lemma 3 and 4 implies Theorem 1, i.e.

PG (W) # F6 W) | Xo = x0, Wo = wo) < co, + 3(d) +27




	Overview
	Picard map for Markov chain simulation
	Theoretical results
	Simulations
	References
	Contraction of the Picard map

